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A b s t r a c t

Wi-Fi sensing involves using Wi-Fi technology to sense the surrounding 
environments, and it has strong potential in a variety of sensing applications. 
Recently, several advanced deep-learning-based solutions using channel state 
information (CSI) data have shown great performance, but it is still difficult 
to use in practice without explicit data collection, which requires expensive 
adaptation efforts for model retraining. In this study, we propose a Channel 
State Information Automatic Labeling System (CALS) that automatically 
collects and labels training CSI data for deep-learning-based Wi-Fi sensing 
systems. The proposed system enhanced the efficiency of collecting labeled 
CSI data for supervised learning through computer vision technologies like 
object detection algorithms. We built a prototype of CALS to demonstrate 
its efficiency and collected data to train deep learning models for detecting 
the presence of a person in an indoor environment. Our results indicate an 
accuracy of over 90% using the auto-labeled datasets generated by CALS.
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1. Introduction
With the technological advancement of wireless 
networks and the increasing demand for them, Wi-
Fi is now available everywhere. Based on this Wi-
Fi infrastructure, there has been active research on 
utilizing channel state information (CSI), which is used 
for transmission control for smooth communication in 

sensing technology. CSI is sensitive to the surrounding 
environment, i.e., its value depends on the multi-pass 
propagation and is influenced by interference, dispersion, 
refraction, and attenuation that occurs while the signal 
from the transmitter is transmitted to the receiver. These 
characteristics have been utilized in a variety of research 
and development applications, including human 
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identification [1,2], activity recognition [3–5], indoor 
presence detection [6,7], and indoor localization [7–10].

However, data-driven deep learning techniques 
that use CSI for training have been limited by the 
fact that they can only learn patterns that are domain-
dependent, where the data is collected. This is because 
the propagation of Wi-Fi signals, which are in the form 
of radio frequency (RF), is affected by even small 
changes in the surrounding environment, leading to 
changes in the collected CSI values and their patterns. 
To address this issue, there has been a growing focus 
on researching deep learning technologies that remain 
unaffected by environmental changes [11,12], and attempts 
have been made to learn data after generating new CSI 
data using generative adversarial networks GANs [5]. 
However, when trying to perform Wi-Fi-based sensing 
by changing the target space itself, performance 
degradation is inevitable with the current technology 
level, and new data collection is required. In particular, 
labeling the collected CSI data for supervised learning 
cumbersome and time-consuming task.

In this paper, we proposed a Channel State 
Information Auto-Labeling System (CALS) for large-
scale deep-learning-based Wi-Fi sensing that utilizes 
object recognition technology of computer vision (CV) 

to improve the efficiency of CSI data collection and 
labeling for training deep learning models based on 
supervised learning. CALS performs CSI measurements 
in parallel with the CV module, such as object 
recognition of images from cameras installed in the 
target domain when collecting Wi-Fi sensing data, and 
uses the recognition results of CV to label the collected 
CSI data. Based on this automated labeling function, 
CLAS can efficiently collect large amounts of data, and 
various labels are possible depending on the CV model. 
It also has the advantage of easy model replacement. 
In addition, a deep learning model was trained and 
evaluated for real-time human presence detection in 
indoor environments using CSI data collected by CALS, 
and achieved a performance of over 90%.

2. CALS
2.1. System structure and processing process
Figure 1 shows the structure of the proposed CALS. 
There are two processes involved in this system: 
CV process and Wi-Fi sensing process, which occur 
simultaneously. Prior to the system execution, time 
synchronization is achieved by both the camera and the 
CSI extractor through the same Network Time Protocol 

Figure 1. Proposed CALS architecture
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(NTP) server.
In this study, the object tracking technology is 

used in the CV process, and the ByteTrack [13] model, 
which is achieving state-of-the-art (SOTA) in the field 
of Multi-Object Tracking (MOT), is applied for the 
purpose of binary class labeling for training a deep 
learning model for human presence detection. When 
the images from the cameras installed in the CSI 
extraction space are input to the object tracking model, 
the object tracking model outputs the frame number, 
target ID, and bounding box coordinates for the frames 
in which a person is detected. Since time information is 
required for CSI labeling, the time value corresponding 
to the frame index is added to the output value based 
on the fps of the video.

During the Wi-Fi sensing process, data is extracted 
from Wi-Fi communication through a CSI extractor. For 
the subcarrier frequency transmitted from the transmitter 
to the receiver, the receiver generates CSI (amplitude 
and phase information) and retransmits it to the receiver. 
During the process, the CSI extractor collects data through 
User Datagram Protocol (UDP) packets. For data packets, 
CSI can be represented using the same matrix as Equation 
(1). The number of antennas in the transmitter and the 
number of antennas in the receiver determine the size of 
the matrix, with elements representing a set of subcarriers 
composed of complex values, as shown in Equation 
(2). For the second subcarrier frequency, represented by 
amplitude and phase information, it can be expressed as 
Equation (3).

The CSI value as well as the receiver’s MAC 
address and time value are extracted from the UDP 
packet and stored in a table format. The MAC address 
is used to determine the source of the collected CSI.

Finally, the target tracking information obtained 
from the CV process and the CSI data obtained from the 
Wi-Fi sensing process are labeled by the CALS manager 
by comparing the time information. First, in the target 
tracking information, the continuous time when the target 
is tracked is divided into Ti, which contains the start 
frame time and end frame time information, as shown in 
Equation (4). Equation (5) shows the time information 
divided into a total number. At this time, the criterion for 
separating consecutive time is determined by the frame 
threshold θf, which is set to 10 in the 20 fps environment 
in this study. For all the temporal information belonging 
to [s1, eN], the CSI time (t) that overlaps with the 
corresponding time zone will be labeled as 1 because a 
person is present in the room, and the CSI data that does 
not fall anywhere in the range [s1, eN] will be labeled as 
0. At this time, a specific time value, γ, is used to reduce
the CSI labeling error, and it is labeled as -1 for Si -γ ≤ t
< Si, ei < t ≤ ei + γ. The operation flow of the described
CALS can be seen in Figure 2.

2.2. CALS manager module
In the proposed system, the manager is responsible not 
only for labeling CSI data by synthesizing the results of 
the two processes, but also for processing to improve 
the performance of deep learning models and provide 
data customized to the user’s needs. 

In training binary classification models, the balance 
of data classes can achieve more accurate prediction 
performance. Therefore, since the number of situations 
without people in the experimental space is larger, the 
number of CSI data labeled with that class is adjusted 
to balance the number of CSI data collected during the 
time when people are active in the space. Unnecessary 
data collection can also be avoided by ensuring that 
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data is collected at the size required by the user, 
which can be accomplished by setting the collection 
time rather than the size. Additionally, the user can 
dynamically adjust the desired CSI data sampling rate 
per second by communicating with the CSI extractor.

3. Real-time human presence detection
in indoor environments based on deep
learning
Human presence detection in indoor environments is 
used for various purposes in various facilities such as 
smart homes and industrial facilities. Usually, camera-
based monitoring or physical sensors are used, but 
if CSI is used, the privacy problem of camera-based 
monitoring system and the small amount of information 
of physical sensors can be solved [15]. In addition, CSI 
can be utilized without additional equipment due to the 
establishment of Wi-Fi infrastructure.

In Section 3, we utilized CSI data collected by 
CALS to train and evaluate a deep learning model for 
real-time human presence detection.

3.1. Test environment
Figure 3 shows the CSI collection environment for 
training the human presence detection model. A total of 

four Raspberry Pi 4 models were used as IoT devices, 
and a TP-LINK model was used as an access point (AP), 
with one antenna pair each to obtain 64 subcarrier 
information for each pair in the Wi-Fi 4 (IEEE 802.11n) 
2.4 GHz band, 20 MHz bandwidth. For the CSI 
extractor, we installed the Nexmon CSI Extractor [14] 
provided by Nexmon on the Raspberry Pi 4 model. The 
extractor extracts CSI data generated during wireless 
network communication between IoT devices and APs 
regardless of their location. The experimental scenarios 
included repeated walking and stopping between IoT 
devices and APs, as well as collection in the absence 
of people. All experimental processes were recorded 
by installing a WiseNet SNK-B73047BW camera in a 
location that covers the entire space.

3.2. Data visualization
The CSI data collected by CALS in this study consists 
of binary classes with a value of 1 for the presence of 
a person and 0 for the absence of a person. Figures 4 
and 5 illustrates the amplitude values of the subcarriers 
for each class. In the top graph, we can see that they 
have different signal patterns, and in the heat map, 
we can see that the amplitude variation of the signal 
is more pronounced in class 1. This can be attributed 

Fig. 2. Proposed CALS flowchart. Figure 3. Human presence detection testbed
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to the effect of multipath propagation due to human 
activity between the receiver and transmitter. To obtain 
the graph, we used 52 subcarriers with 12 null, pilot 
subcarriers removed.

3.3. Data preprocessing
For pre-training and testing, we used CSI extracted 

from about 415,000 packets, and the data size per class 
is balanced at about 200,000 packets each. For data 
preprocessing, we first removed unused attributes (MAC 
address, time), null subcarriers that serve to protect 
the band so that Wi-Fi can be used with other wireless 
technologies, and 12 pilot subcarriers used for Wi-Fi link 
control. We then divided the training and test data by 8:2. 

Figure 4. Amplitude of 52 subcarriers when there is human activity indoors

Figure 5. Amplitude of 52 subcarriers when no one is in the room
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Since the data has 52 subcarriers with different scales 
of amplitudes, using it for training as is can lead to poor 
performance. Therefore, for the training data, we used 
StandardScaler provided by scikit-learn to standardize 
the data so that it has a distribution with a mean of 0 
and a standard deviation of 1. In this case, the signal 
outliers were not removed and used for training because 
they often occur in the real world. The standardization 
information was stored separately and used for 
standardization of test data and real-time data.

Since CSI data was collected sequentially over 
a period of time (time series data), not only current 
information but also past information was used for 
training. Therefore, in this study, we set a constant 
window size and trained on a window-by-window 
basis. In this case, two consecutive windows were 
organized in such a way that half of the size (half of the 
time) was overlapped. Figure 6 shows an example of 
window utilization in this study.

3.4. Real-time presence detection process 
and evaluation
For real-time human presence detection, we first 
trained and evaluated three models before selecting the 
most efficient one. The models used Random Forest, 
which is an ensemble learning method with good 
generalization performance, long short-term memory 

network (LSTM), which is widely used for learning 
time series data, and 1D CNN. When we checked 
the correlation coefficient between each subcarrier 
for the data collected by CALS, we found that the 
three consecutive subcarriers were highly correlated. 
Therefore, we selected the three consecutive subcarriers 
for training, and the results of the evaluation of the test 
sets are shown in Figure 7. For the three models, we 
evaluated the window size in increments of 20 from 
10 (1 second) to 70 (7 seconds) and found that the 1D 
CNN had the highest accuracy. All three models also 
achieved higher accuracy with larger window sizes, 
but we chose a window size of 2.5 seconds (half the 
window size), i.e., window 50, which is a reasonable 
time for real-time classification tasks. Table 1 shows 
the training time for each model. As you can see, the 
random forest model trains the fastest. However, as we 
increased the number of hyperparameters or estimators 
and expanded the window size in an effort to enhance 
performance, we noticed that the improvement 
plateaued at 93%. In contrast, the other two time 
series models continued to improve and reached a 
performance level of 99% when the window size was 
increased to 70 or more. Consequently, we decided to 
prioritize the 1D CNN as our primary model due to its 
faster learning speed, even though it achieved similar 
performance to the other models.

Figure 6. Example of window utilization



2022 Volume 1, Issue 1 Channel State Information Auto-Labeling System (CALS) for Large-Scale Deep-Learning-Based Wi-Fi Sensing

-21-

Figure 7. Evaluation results for datasets collected by CALS

Table 1. Learning time according to model

Model Time (s)
1D CNN 1278.41
LSTM 1587.01

Random Forest 90.51

For training the 1D CNN, we used Binary Cross 
Entropy as the loss function for binary classification 
and Adam as the optimizer. We set the maximum 
number of training epochs to 50, the batch size to 32, 
and the learning rate to start with an initial learning 
rate of 0.01 and decrease by a factor of 10 every 10 
training cycles. The configuration of the proposed 1D 
CNN model is shown in Table 2. The input was the set 
window size (w_size), and each CNN operation was 
padded to have the same size output. Rectified Linear 
unit (ReLu) was used as the activation function applied 
after the computation. The total number of parameters 
trained was 74,811.

Table 2. Configuration of the proposed 1D CNN

Type Output size Filter
Input w_size x 1 -
Conv1D w_size x 128 5 x 1
MaxPool1D w_size/2 x 128 1 x 2
Conv1ID w_size/2 x 128 3 x 1
GlobalMaxPool1D 1 x 128 -
FC 1 x 128 -
FC 1 x 64 -
Sigmoid 1 -

Figure 8. Loss and accuracy of 1D CNN according to epoch.

Figure 8 shows the classification accuracy as a 
function of the number of training epochs when the 
window size was set to 70, which was the highest 
performance among the test cases. The maximum 
number of training epochs was set to 50, but training 
ended at 38 epochs because the validation loss no 
longer showed a steady decline starting at 33 epochs. 
The loss and accuracy graphs for the training and 
validation datasets all show an ideal learning curve 
shape, and the accuracy of the validation dataset is 
about 94%.

Figure 9 shows the process of real-time human 
presence detection. First, the CSI obtained in real-
time is converted to amplitude values, and unused 
features are removed and standardized with pre-stored 
information. Then, for each subcarrier K selected in the 
pre-training, the data is put into two queues of window 
size. Once the queues are filled, the data is combined 
and fed into the pre-trained 1D CNN model, which in 
turn determines the presence of a person. Then, for new 
CSI data, the queue performs a simultaneous pop and 
push. The classification process is performed every 
time half of the window size is updated by discarding 
the first data and pushing in new data.

For real-time human presence detection, three 
new indoor spaces were selected and evaluated first 
with the pre-trained model, then retrained on the CSI 
data collected in each space, and then evaluated again. 
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Figure 9. Overview of real-time human presence detection process

Figure 10. Accuracy results for 3 testbeds
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Based on the graph in Figure 10, the pre-trained model 
showed low accuracy in the low 40% range for all test 
spaces, but the evaluation after retraining on newly 
collected data showed accuracy in the high 90% range. 
This demonstrates the environment-sensitive nature of 
CSI as described earlier.

3. Conclusion
In this paper, we proposed CALS, an automatic CSI 
labeling system, to improve the efficiency of CSI 

labeling, and obtained an accuracy rate of over 90% by 
performing and evaluating human presence detection 
in indoor environments using deep learning on data 
collected by CALS. We also confirmed the sensitivity 
of CSI to environmental changes by conducting tests on 
new spaces using pre-trained models. In future work, 
we plan to study the verification of labeling errors that 
are currently lacking in CALS and how to utilize CSI 
in dynamic environments.
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