
-23-

2023 Volume 1, Issue 1

Signal and Information Processing
ISSN: 2630-4805

Comprehensive Survey of Deep Learning in Radar Signal 
Processing: Opportunities and Challenges

Di Wu, Ying Xu, Beining Wang, Zhe Geng*, Daiyin Zhu 
Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics 
and Astronautics, Nanjing 211106, China

*Corresponding author: Zhe Geng, zhegeng@163.com 

Copyright: © 2023 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

A b s t r a c t :

As of the most important branches of artificial intelligence, deep learning (DL) 
has developed rapidly in recent years, and has been successfully used in many 
research fields. Although the DL-based algorithms offer a great opportunity for 
researchers to finally conquer the bottleneck problems in the field of radar signal 
processing, they also bring about brand-new technical challenges. In this paper, 
comprehensive review of the applications of DL methods is proposed, including 
low probability of interception and passive radar waveform recognition, 
automatic target recognition, radar jamming/clutter recognition and suppression, 
and radar waveform and antenna array design. Recently, the proposed DL-based 
radar waveform recognition and SAR automatic target recognition methods are 
summarized and analyzed in detail. The major factors limiting the performance 
of the DL algorithms are also examined. This work aims to provide valuable 
information to the scholars in this promising field of research.

K e y w o r d s :

Deep learning
Waveform recognition
Automatic target recognition (ATR)
Low probability of intercept

Online publication:

1. Introduction
In recent years, with the development and popularization 
of Graphics Processing Units (GPUs), deep learning 
algorithms represented by Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks 
(RNNs) have achieved remarkable successes in various 
fields such as image recognition, speech recognition, 
and autonomous driving. In the field of radar signal 

processing, more researchers are attempting to utilize 
deep learning algorithms to address related issues [1], such 
as waveform recognition [2,3], automatic target recognition 
[4], identification and suppression of interference and 
clutter signals [5], as well as bottleneck problems in areas 
like radar waveform and array design [6]. These efforts 
have yielded a series of research achievements with 
significant theoretical importance and practical value [7]. 
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The following is a categorized overview:
(1) Radar waveform recognition

To address the issue of traditional radar’s 
high-power emission signals being easily 
intercepted by enemy reconnaissance equipment, 
scholars worldwide have been dedicated to 
developing Low Probability of Intercept (LPI) 
waveforms with superior radio frequency stealth 
characteristics. Deep learning algorithms provide 
new insights for solving the problem of fast and 
accurate recognition of complex LPI waveforms, 
enhancing the capabilities of electronic warfare 
systems, anti-radiation missiles, and electronic 
support systems to intercept LPI signals [2]. 
On the other hand, passive radar technology, 
which utilizes external emitters such as TV/cell 
phone base stations, has also developed rapidly. 
Compared to active radars, passive radars not 
only offer better anti-intercept performance 
but can also be used for long-term monitoring 
of large detection areas without consuming 
additional energy or spectrum resources. 
However, the transmitted signals of passive 
radars are unknown to the radar receiver, making 
matched filtering impossible. To overcome 
this challenge, some scholars have proposed 
using deep learning algorithms to estimate 
external emitter signals, achieving a series of 
valuable preliminary results [8,9]. Although deep 
learning algorithms show great potential in radar 
waveform recognition, numerous studies have 
demonstrated that targeted adversarial attacks 
(AAs) can lead to a drastic decrease in the 
classification accuracy of these algorithms [10].

(2) Automatic target recognition
Radar automatic target recognition technology 
based on deep learning can be mainly divided 
into the following categories: (a) Automatic 
Target Recognition (ATR) based on SAR 
images [11]; (b) Target recognition based on high-
resolution range profiles, primarily including 
recognition of aircraft [12], ground vehicles [13], 
and ship targets [14]; (c) Target recognition based 
on micro-Doppler features, mainly comprising 
human target action recognition [15,16] and 

discrimination between drones and birds [17,18]; 
(d) Automatic target recognition based on other 
information, such as target radar cross-section 
area [19]. Among the relevant papers published 
in this field in the past five years, the direction 
of Synthetic Aperture Radar ATR (SAR-
ATR) accounts for the highest proportion. This 
technology, with its significant engineering 
practical value, distinct dual-use characteristics 
for military and civilian applications, and wide 
range of application scenarios, is the focus of this 
article. Although theoretical research on SAR-
ATR has yielded abundant results, providing 
new insights for addressing the efficient and 
accurate interpretation of SAR images, its 
engineering application still faces challenges 
such as limited quantity and diversity of training 
samples and poor robustness under adversarial 
attack conditions. Closely related to this research 
direction are automatic target detection and 
recognition relying on SAR images [20,21] and 
video SAR [22], with typical problems including 
ground vehicle detection in large scenes [23] and 
ship target detection and classification in port 
areas [21]. 

(3) Identification and suppression of interference and 
clutter signals
With the continuous advancement of deceptive 
active interference technology, traditional 
anti-interference techniques such as sidelobe 
blanking and sidelobe cancellation can no 
longer ensure the normal operation of military 
radars under enemy electronic interference 
conditions. In view of this, scholars at home and 
abroad have carried out a series of electronic 
counter-countermeasures research based on 
deep learning, mainly including interference 
signal recognition [23,24], target recognition under 
interference conditions [25], and optimization 
of adaptive anti-interference strategies [26]. 
Meanwhile, deep learning algorithms provide 
technical support for further improving the 
suppression capability of modern radars against 
sea and ground clutter. Related research includes 
target detection in sea clutter [27,28] and ground 
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clutter environments [29].
(4) Radar waveform and array design

In radar waveform and array design, deep 
learning is mainly used for: (a) Transmission 
power spectrum design for spectrum sharing. 
The most representative achievement in this 
area is the non-interfering spectrum interval 
discrimination and adaptive radar waveform 
adjustment technology developed by the US Army 
DEVCOM Laboratory [30]; (b) Multiple-Input 
Multiple-Output (MIMO) radar transmission 
waveform design and optimization [6]; (c) 
Antenna array design, with the main research 
direction being MIMO radar subarray design and 
optimization [31].

It should be noted that the technical route of deep 
learning-based interference and clutter signal recognition 
methods is the same as that of radar waveform 
recognition, while the target detection problem in 
interference and clutter has a certain degree of overlap 
with the target detection and recognition problem based 
on SAR images. Meanwhile, in the field of MIMO radar 
waveform and array design, existing research is mainly 
based on simulation experiment results using MATLAB, 
and there is relatively little field experimental data, 
which is not yet sufficient to demonstrate the absolute 
advantage of deep learning over classical algorithms. 
Therefore, due to space limitations, this article focuses on 
analyzing the application of deep learning in the field of 
radar waveform recognition and SAR-ATR and does not 
discuss other research directions in detail.

2. Low probability of intercept and 
passive radar waveform recognition
With the rapid development of LPI and passive radar 
technologies, radar waveform recognition techniques 
based on deep learning have become a hot spot 
of attention for researchers both domestically and 
internationally. Commonly used neural network models 
in this field primarily include CNNs [32], autoencoders [33], 
and RNNs combined with attention mechanisms [34] (see 
Figure 1). Numerous research results indicate that radar 
waveform recognition technology based on deep learning 
significantly outperforms traditional algorithms in areas 

such as LPI waveform recognition and passive radar 
external emitter signal estimation.

Currently, LPI waveform recognition is primarily 
achieved through time-frequency analysis methods 
such as Short-Time Fourier Transform (STFT) [35], 
Wigner-Ville Distribution (WVD) [2,36], and Choi-
Williams Distribution (CWD) [37]. Among these, STFT 
belongs to linear time-frequency representation, while 
WVD and CWD belong to quadratic time-frequency 
representation. Compared to traditional WVD, CWD can 
effectively filter out cross-terms by selecting appropriate 
exponential weighted kernel function parameters, 
making it the most widely used. In 2020, researchers 
from Fraunhofer FKIE in Germany first performed time-
frequency analysis on LPI waveforms using CWD and 
then achieved a recognition accuracy rate of over 99% 
under small sample conditions through transfer learning, 
utilizing five high-performance pre-trained CNN 
neural network models: VGG16, ResNet50, Inception-
ResNetV2, DenseNet, and MobileNetV2 [37]. Given the 
high computational complexity of CWD, researchers 
from Beijing Institute of Technology, Nanjing University 
of Science and Technology, University of Electronic 
Science and Technology of China, and a branch of 
Islamic Azad University in Iran have respectively used 
pseudo-WVD [2], Fourier Synchrosqueezed Transform 
(FSST) [38], and STFT [39] for time-frequency analysis of 
LPI waveforms, effectively reducing computational time 
costs. Numerous studies have shown that CNN neural 
network models can accurately and efficiently analyze 
and extract features from time-frequency images, and 
their waveform recognition accuracy is significantly 
better than that of RNN networks such as Long Short-
Term Memory (LSTM). It is worth noting that time-
frequency processing is not the only technical approach 
for waveform recognition. For example, in 2020, Yildirim 
et al. (2020) from Qatar University proposed an adaptive 
one-dimensional CNN with four hidden layers and two 
dense layers for the classification of continuous and pulse 
waves [39].
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Passive radars utilize existing external emitters’ 
radio waves for target detection, eliminating the need 
for dedicated radar transmitters and spectrum resources, 
thus resulting in lower costs. Commonly used external 
emitters include [40]: (1) analog communication systems; 
(2) digital communication systems; (3) satellite-
based communication systems; and (4) ground-based 
positioning systems. Among them, passive radars that 
use digital television and mobile phone base stations 
as external emitters have been a hot research topic in 
recent years [41]. Television and mobile phone base 
stations are widely distributed across the country, with 
coverage areas increasing year by year. Radio waves were 
transmitted around the clock, uninterrupted, enabling 
long-term monitoring of specified detection areas without 
consuming additional energy. On the other hand, with 
the development of wireless communication technology 
and the popularity of mobile phones and televisions, the 
spectrum resources required by communication systems 

are expected to increase year by year. Building passive 
radars can help achieve spectrum sharing between radar 
and communication systems, thereby promoting the 
efficient use of scarce spectrum resources. Although 
passive radars have broad development prospects, their 
detection performance is often inferior to active radars 
because the waveforms of external emitter signals are 
usually not conducive to target detection and localization. 
These signals need to be estimated from the direct signals 
received from the external emitters through the receiver’s 
reference channel. Currently, some scholars at home 
and abroad have conducted preliminary explorations on 
the estimation of external emitter signals based on deep 
learning. The most representative achievements in this 
field include a deep RNN designed by researchers at 
Rensselaer Polytechnic Institute in the United States for 
precise estimation of passive radar waveform parameters 
and high-quality reconstruction of SAR images [7], as well 
as a new neural network architecture and transfer learning 

Figure 1. CNN, Autoencoder, and RNN combined with attention mechanism.
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mechanism composed of a dual-channel CNN and 
bidirectional LSTM, designed by researchers at Tianjin 
University [42].

Numerous studies have shown that the classification 
accuracy of radar and communication system transmit 
waveform recognition algorithms based on deep neural 
network models can significantly decrease under 
adversarial attack (AA) conditions. Depending on the 
attacker’s level of knowledge about the structure and 
specific parameters of the neural network model, AAs 
can be classified as white-box, gray-box, and black-
box attacks. In real-world confrontation scenarios, AA 
perpetrators generally do not have complete knowledge 
of the specific structure and parameters of their targets, 
so they often adopt the “black-box” attack approach. 
However, researchers and engineers often assume 
a “white-box” attack scenario when conducting AA 
risk assessments of waveform recognition algorithms 
based on deep learning, where the enemy is assumed 
to have full knowledge of our neural network model’s 
specifics. In less sensitive application areas, developers 
sometimes voluntarily disclose model parameters and 
invite researchers in related fields to attack them in the 
form of contests with prizes. In 2019, researchers from 
Lulea University of Technology in Sweden pointed 
out that even if AA perpetrators do not know their 
target model’s parameters, they can still significantly 
reduce the classification accuracy of the attacked neural 
network model by designing universal adversarial 
perturbations [10]. With the continuous development of 
AA technology, various AA detection and adversarial 
training (AT) methods have emerged, effectively 
improving the robustness of neural network models 
under AA conditions [43]. As the application of deep 
learning algorithms in the field of waveform recognition 

increases, AA and anti-AA technologies are expected to 
promote and restrict each other for a considerable period.

3. Automatic target recognition based on 
SAR images
Currently, relevant research conducted by scholars 
at home and abroad in this field mainly relies on the 
MSTAR dataset, which was collected by the Defense 
Advanced Research Projects Agency (DARPA) and the 
US Air Force Research Laboratory (AFRL) between 
1995 and 1997. This dataset contains high-resolution 
SAR images of ground military targets such as tanks and 
armored vehicles.

In terms of developing SAR-ATI algorithms based 
on deep learning, the ten-class target classification 
problem under Standard Operating Conditions (SOC) 
has been solved for the MSTAR dataset. However, 
there is still considerable room for improvement in 
target classification accuracy under Extended Operating 
Conditions (EOC) [44]. The target observation parameters 
under these two conditions are shown in Table 1. 
Meanwhile, existing algorithms primarily utilize the 
MSTAR dataset to evaluate classification accuracy, 
lacking a systematic and in-depth analysis of the potential 
impact of confounders (i.e., targets present in the test 
set but not encountered during training) and clutter 
backgrounds in real-world engineering applications, as 
well as the inherent mechanisms of deep neural network 
models for extracting target feature maps.

In 2016, researchers from Wright State University 
in the United States and AFRL proposed AFILeNet [45]. 
When the training and testing sets contained targets 
of the same and similar categories, the classification 
accuracy of MSTAR’s ten categories of targets was 

Table 1. Target observation parameters for Standard and Extended Operating Conditions

Parameter name Standard Operating Conditions (SOC) Extended Operating Conditions (EOC)

Signal-to-noise ratio / Additional noise -10dB < SNR < +10dB

Depression angle 15° (Test), 17° (Training) 17° (Test), 30°/45° (Training)

Resolution 0.3×0.3 (m2) 0.3×0.3 - 0.7×0.7 (m2)

Sub-model / T72, BTR60, T62, BMP2

Target occlusion / Occlusion rate generally 10%–50%
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99.4% and 93%, respectively. In 2019, Kechagias-
stamatis et al. (2019) from Cranfield University in 
the UK proposed the l1-2-CCNN algorithm based on 
deep learning and sparse representation [46]. They used 
observation samples at a pitch angle of 15° as training 
data and observation samples at pitch angles of 30° and 
45° as testing data, achieving classification accuracies 
of 99.61% and 70.87%, respectively. In the same year, 
Inkawhich et al. (2021) from Duke University in the 
United States conducted tests on representative small, 
medium, and large CNN networks and various loss 
functions to further improve the classification accuracy 
of the SAR-ATI system under 100% simulated training 
sample conditions [47]. Inkawhich et al. (2021) found that 
although large CNNs with depths exceeding 100 layers 
and containing tens of millions of neurons demonstrate 
unparalleled superiority over small and medium-sized 
networks in optical image recognition tasks, they do not 
have a significant advantage over medium-sized networks 
in low-resolution SAR image classification, which is 
dominated by grayscale images [48]. In 2021, they used 
SAR images of ships obtained by GF-3 and Sentinel-1 
satellites to train neural networks for confusion detection, 
achieving good results.

Several other studies have conducted extensive 
and in-depth research on SAR target recognition [49–54]. 
Among them, Chen et al. (2016) propose a novel deep 
convolutional neural network called A-ConvNets, which 
achieves classification accuracies of 99.1%, 96.1%, 
and 98.9% under SOC, EOC-1, and EOC-2 working 
conditions, respectively [49]. Zhang et al. (2021) present an 

FEC algorithm based on electromagnetic scattering and 
deep CNN features, achieving an average classification 
accuracy higher than 98% for five variants of T72 in 
the EOC-2 scene [50]. Feng et al. (2021) propose to 
organically combine target component models with 
deep learning algorithms [51]. Firstly, it extracts the local 
features of the target using a bidirectional convolutional 
recurrent network based on the ASC model of target 
components. Then, it extracts the global features of the 
target using a fully convolutional network. Finally, it 
makes decisions on target categories by fusing local 
and global features. The recognition accuracy of this 
network is higher than 99% for both EOC-1 and EOC-
2. Li et al. (2022)  introduce a multi-scale CNN based 
on component analysis [52]. It first divides the SAR target 
into multiple parts according to its geometric structure by 
extracting ASC information from the target echo. Then, 
it judges the target category by synthesizing the global 
information extracted from the entire image by a shallow 
network and the local detail information extracted from 
each component by a deep network, ultimately achieving 
a SOC recognition accuracy higher than 98%. It should 
be noted that the aforementioned near-100% accuracy 
rates are all evaluated using data related to standard target 
morphologies at a 30° pitch angle. When tested using 
data at a 45° pitch angle and rigid target deformation, the 
classification accuracy is only 76.32%.

Table 2 and Table 3 summarize the typical SAR-
ATI algorithms developed by foreign and domestic 
researchers relying on the MSTAR dataset since 2016, 
respectively. Among them, SOC refers to the standard 

Table 2. Overview of typical SAR target recognition algorithms based on deep learning (foreign)

DNN Main features Training/testing conditions Number

AFRLeNet LeNet Add dropout layer to the network
SOC 1-1

EOC (different training/testing targets) 1-2

AlexNet Fusion of deep learning and sparse 
representation

EOC (17° training, 30° testing) 2-1

EOC (17° training, 45° testing) 2-2

LeNet (SMPL)
ResNet18 (RN18)

Wide-RN18 (WRN18)

Data augmentation, model construction, loss 
function selection SOC 3-1

Improved ResNet18
ResNet18 + dropout layer, data augmentation, 

introduction of abnormal samples during 
training

SOC 4-1
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operating condition where data at a 17° pitch angle is 
used for training, and data at a 15° pitch angle is used 
for testing. The target recognition accuracies of various 
algorithms under SOC and different EOC conditions are 
shown in Figure 2.

Although deep learning-based target recognition 
technology provides a breakthrough for efficient and 
accurate interpretation of SAR images, the engineering 
application of this technology still faces the following two 
challenges:

(1) Limited number and variety of SAR image 
training samples

The number of labeled, measured SAR image 
samples available for neural network training 
is severely insufficient, and the backgrounds 
of training and testing samples are highly 
correlated. The use of simulation software based 
on ray tracing methods and finely adjusted 
target computer-aided design (CAD) models can 
generate high-quality simulated SAR images, but 
the computational cost is huge. At the same time, 
classic optical image augmentation techniques 
such as image rotation and stretching, as well 
as simulation SAR image synthesis techniques 

Table 3. Overview of typical SAR target recognition algorithms based on deep learning (domestic)

DNN Main features Training/testing conditions Number

A-Conv Nets Remove the fully connected layer of a typical CNN, 
multi-level network + multi-layer feature fusion

SOC 5-1

EOC-1 (17° training, 30° testing); 5-2

EOC-2 (configuration, model variants) 5-3

MBCRN + A-Conv Nets Local/global feature fusion for decision-making

EOC-1 (17° training, 30° testing) 6-1

EOC-2 (configuration variants) 6-2

EOC-2 (model variants) 6-3

CA-MCNN Local/global feature fusion for decision-making SOC 7-1

Improved VGGNet Target ASC feature extraction + clustering + ASC 
and CNN feature fusion

EOC-2 (T72 model variants, including 
SN132, SN812, A04, A05, A07, A10) 8-1

Figure 2. Performance comparison of existing deep learning networks under different operating conditions.
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based on Generative Adversarial Networks 
(GANs), can rapidly expand the SAR image 
training set. However, they do not fully consider 
the electromagnetic scattering characteristics 
of SAR targets and cannot adaptively handle 
significant changes in SAR image morphology 
caused by changes in radar system parameters 
and observation scenes. Compared with the 
above techniques, dataset construction and 
expansion techniques based on the physical 
imaging mechanism of SAR images have better 
physical interpretability but higher computational 
complexity.

On the other hand, existing deep learning 
algorithms heavily rely on the correlation 
of clutter backgrounds between training and 
testing data when classifying targets in the 
MSTAR dataset, rather than focusing on the 
characteristics of the targets themselves. This 
leads to some deep learning algorithms still 
being able to correctly classify samples based on 
SAR image background clutter or shadows when 
the target area in the SAR image sample is 100% 
occluded. Simultaneously, most neural networks 
currently used for SAR image recognition are 
based on the assumption that the target types 
and poses of the SAR images in the training and 
testing sets are the same and that the statistical 
characteristics of the clutter background are 
consistent. They do not adequately consider the 
impact of variations in similar target types, rigid 
target deformations, confusing objects, statistical 
characteristics of clutter, and changes in clutter-
to-noise ratio. Additionally, the physical 
interpretability of the specific decisions made 
by neural networks is not strong. Therefore, 
building a large, high-quality SAR image 
database with diverse target poses and clutter 
backgrounds is essential for achieving leapfrog 
development in deep learning-based SAR-ATI 
technology.

(2) Poor robustness of existing deep learning 
algorithms under AA conditions 
AA refers to inducing deep learning algorithms 
to misclassify targets by altering the local details 

of the target images. As mentioned earlier, AA 
can be classified into white-box, gray-box, 
and black-box attacks based on whether the 
attacker has access to the structure and specific 
parameters of the target neural network. AA 
can also be divided into targeted attacks and 
generalized attacks based on whether there 
are specific requirements for misclassification 
categories. Furthermore, AA can be categorized 
into gradient-based attacks (such as I-FGSM, 
ILCM, etc.), score-based attacks, and decision-
based attacks according to the specific means 
of attack. In 2020, researchers from Guangzhou 
University used three classic AA algorithms to 
attack neural networks: I-FGSM, ILCM, and 
DBA. Experimental results showed that under 
I-FGSM generalized black-box attack conditions, 
the target recognition rate of VGGNet and 
ResNet dropped from 95% to 7%. Under ILCM-
targeted white-box attacks, the confidence of 
ResNet in the true class label decreased from 
99% to 61.4%. Under DBA-targeted black-box 
attacks, the confidence of AlexNet, VGGNet, 
and ResNet in the true class label dropped to 
22.4%, 15.9%, and 23.2%, respectively.

Although techniques such as adversarial 
training, adversarial detection, and gradient 
masking can improve the robustness of deep 
neural networks against adversarial samples, 
mainstream neural network models still need to 
enhance their resistance to adversarial attacks 
as AA technology continues to evolve. The 
challenges faced by existing deep learning-based 
SAR ATI technology are illustrated in Figure 3.

4. Conclusion
This article systematically reviews the research trends 
of deep learning algorithms in the field of radar signal 
processing. It briefly introduces the research overview 
and development trends of deep learning in areas such as 
LPI and passive radar waveform recognition, automatic 
target recognition, identification and suppression of 
interference and clutter signals, as well as radar waveform 
and array design. The article provides a detailed analysis 
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of the extraordinary potential and urgent bottlenecks 
exhibited by typical deep neural network models such 
as CNN, RNN, autoencoders, and techniques like 
transfer learning in radar waveform recognition and 
SAR-ATI domains. The aim of this article is to present 

a comprehensive picture of the current research status in 
this field, providing references for researchers to explore 
potential research topics with significant scientific and 
engineering implications, and to carry out subsequent 
studies with significant theoretical and practical value.

Figure 3. Challenges faced by deep learning-based 
SAR ATI technology.

Funding
Young Scientists Fund of the Natural Science Foundation of Jiangsu Province (Project No.: BK20200420); 
Special Project of Civil Aircraft Research of Ministry of Industry and Information Technology (Project No.: MJ-
2018-S-28)

Disclosure statement
The authors declare no conflict of interest.

References
[1] Peng G, Zhu S, 2022, Opportunities and Challenges for the Development of Deep Learning Radar Recognition Methods. 

Modern Radar, 44(4): 95–96.
[2] Pan ZS, Wang SF, Zhu MT, et al., 2020, Automatic Waveform Recognition of Overlapping LPI Radar Signals Based on 

Multi-Instance Multi-Label Learning. IEEE Signal Processing Letters, 27: 1275–1279.



2023 Volume 1, Issue 1

-32-

[3] Geng Z, Wang BN, Yan H, et al., 2021, Moving Target Detection and Tracking with Multi-Platform Radar Network (MIN). 
IET Radar, Sonar & Navigation, 16(5): 815–824.

[4] Zhu XX, Devis T, Mou LC, et al., 2017, Deep Learning in Remote Sensing: A Comprehensive Review and List of 
Resources. IEEE Geoscience and Remote Sensing Magazine, 5(4): 8–36.

[5] Xiao YH, Zhou JY, Yu YZ, et al., 2021, Active Jamming Recognition Based on Bilinear EfficientNet and Attention 
Mechanism. IET Radar, Sonar & Navigation, 15(9): 957–968.

[6] Hu JF, Wei ZY, Li YZ, et al., 2021, Designing Unimodular Waveform(s) for MIMO Radar by Deep Learning Method. 
IEEE Transactions on Aerospace and Electronic Systems, 57(2): 1184–1196.

[7] Mason E, Yonel B, Yazici B, 2017, Deep Learning for Radar. IEEE Radar Conference, IEEE Press, Seattle, 2017: 1703–
1708.

[8] Yonel B, Mason E, Yazici B, 2018, Deep Learning for Waveform Estimation in Passive Synthetic Aperture Radar. IEEE 
Radar Conference, Orlando, FL: IEEE Press, 2018: 1395–1400.

[9] Wang Q, Du PF, Yang JY, et al., 2018, Transferred Deep Learning Based Waveform Recognition for Cognitive Passive 
Radar. Signal Processing, 155: 259–267.

[10] Sadeghi M, Larsson EG, 2019, Adversarial Attacks on Deep-Learning Based Radio Signal Classification. IEEE Wireless 
Communications Letters, 8(1): 213–216.

[11] Belloni C, Balleri A, Aouf N, et al., 2020, Explainability of Deep SARI through Feature Analysis. IEEE Transactions on 
Aerospace and Electronic Systems, 57(1): 659–673.

[12] Pan M, Jiang J, Kong QP, et al., 2017, Radar HRRP Target Recognition Based on t-SNE Segmentation and Discriminant 
Deep Belief Network. IEEE Geoscience and Remote Sensing Letters, 14(9): 1609–1613.

[13] Zhang L, Li Y, Wang YH, et al., 2021, Polarimetric HRRP Recognition Based on ConvLSTM with Self-Attention. IEEE 
Sensors Journal, 21(6): 7884–7898.

[14] Guo C, He Y, Wang HP, et al., 2019, Radar HRRP Target Recognition Based on Deep One-Dimensional Residual-Inception 
Network. IEEE Access, 7: 9191–9204.

[15] Dadon YD, Yamin S, Feintuch S, et al., 2021, Moving Target Classification Based on Micro-Doppler Signatures via Deep 
Learning. IEEE Radar Conference, IEEE Press, Atlanta, 2021: 1–6.

[16] Yang Y, Hou CP, Lang Y, et al., 2020, Omnidirectional Motion Classification with Monostatic Radar System Using Micro-
Doppler Signatures. IEEE Transactions on Geoscience and Remote Sensing, 58(5): 1–14.

[17] Kim BK, Kang HS, Park SO, 2017, Drone Classification Using Convolutional Neural Networks with Merged Doppler 
Images. IEEE Geoscience and Remote Sensing Letters, 14(1): 38–42.

[18] Rahman S, Robertson D, 2020, Classification of Drones and Birds Using Convolutional Neural Networks Applied to Radar 
Micro-Doppler Spectrogram Images. IET Radar, Sonar & Navigation, 14(5): 653–661.

[19] Wengrowski E, Purrii M, Dana K, et al., 2019, Deep CNNs as a Method to Classify Rotating Objects Based on Monostatic 
RCS. IET Radar, Sonar & Navigation, 13(7): 1092–1100.

[20] Fu JM, Sun X, Wang ZR, et al., 2020, An Anchor-Free Method Based on Feature Balancing and Refinement Network for 
Multiscale Ship Detection in SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 59(2): 1331–1344.

[21] Huang LQ, Liu B, Li BY, et al., 2018, OpenSARShip: A Dataset Dedicated to Sentinel-1 Ship Interpretation. IEEE Journal 
of Selected Topics in Applied Earth Observations and Remote Sensing, 11(1): 195–208.

[22] Ding JS, Wen LW, Zhong C, et al., 2020, Video SAR Moving Target Indication Using Deep Neural Network. IEEE 
Transactions on Geoscience and Remote Sensing, 58: 7194–7204.

[23] Wang ZC, Du L, Mao JS, et al., 2019, SAR Target Detection Based on SSD with Data Augmentation and Transfer 
Learning. IEEE Geoscience Remote Sensing Letters, 16(1): 150–154.



2023 Volume 1, Issue 1

-33-

[24] Shao GQ, Chen YS, Wei YS, 2020, Convolutional Neural Network-Based Radar Jamming Signal Classification with 
Sufficient and Limited Samples. IEEE Access, 8: 80588–80598.

[25] Wang WY, Wei Y, Zhen XX, et al., 2019, Classifying Aircraft Based on Sparse Recovery and Deep-Learning. The Journal 
of Engineering, 2019(21): 7464–7468.

[26] Li K, Jiu B, Wang PH, et al., 2021, Radar Active Antagonism Through Deep Reinforcement Learning: A Way to Address 
the Challenge of Mainlobe Jamming. Signal Processing, 186(9): 1–15.

[27] Chen X, Su NY, Huang Y, et al., 2021, False-Alarm-Controllable Radar Detection for Marine Target Based on Multi-
Features Fusion via CNNs. IEEE Sensors Journal, 21(7): 9099–9111.

[28] Ma LW, Wu JL, Zhang JP, et al., 2019, Research on Sea Clutter Reflectivity Using Deep Learning Model in Industry 4.0. 
IEEE Transactions on Industrial Informatics, 16(9): 5929–5937.

[29] Lepetit P, Ly C, Barthes L, et al., 2021, Using Deep Learning for Restoration of Precipitation Echoes in Radar Data. IEEE 
Transactions on Geoscience and Remote Sensing, 60: 1–14.

[30] Devcom USA, Affairs ARLP, Tech V, 2020, Army Fast-Tracks Adaptable Radars for Congested Environments. Army 
Communicator, 6: 1–6.

[31] Elbir AM, Mishali KV, Eldar YC, 2019, Cognitive Radar Antenna Selection via Deep Learning. IET Radar, Sonar & 
Navigation, 13(6): 871–880.

[32] Zhou RL, Liu FG, Gravelle CW, 2020, Deep Learning for Modulation Recognition: A Survey with a Demonstration. IEEE 
Access, 8: 67366–67376.

[33] Qu ZY, Wang WY, Hou CB, et al., 2019, Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional 
Denoising Autoencoder and Deep Convolutional Neural Network. IEEE Access, 7: 112339–112347.

[34] Liu ZM, Yu PS, 2019, Classification, Denoising, and Deinterleaving of Pulse Streams with Recurrent Neural Networks. 
IEEE Transactions on Aerospace and Electronic Systems, 55(4): 1624–1639.

[35] Ghadimi G, Norouzi Y, Bayderkhani R, et al., 2020, Deep Learning-Based Approach for Low Probability of Intercept 
Radar Signal Detection and Classification. Journal of Communications Technology and Electronics, 65(10): 1179–1191.

[36] Wang C, Wang J, Zhang XD, 2017, Automatic Radar Waveform Recognition Based on Time-Frequency Analysis and 
Convolutional Neural Network. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), IEEE Press, Los Angeles, 2017: 2437–2441.

[37] Lay B, Charlish A, 2020, Classifying LPI Signals with Transfer Learning on CNN Architectures. 2020 Sensor Signal 
Processing for Defence Conference (SSPD), IEEE Press, Edinburgh, 2020: 1–5.

[38] Ni X, Wang HL, Meng F, et al., 2021, LPI Radar Waveform Recognition Based on Multi-Resolution Deep Feature Fusion. 
IEEE Access, 9: 26138–26146.

[39] Yildirim A, Kilanyaz S, 2020, 1D Convolutional Neural Networks Versus Automatic Classifiers for Known LPI Radar 
Signals Under White Gaussian Noise. IEEE Access, 8: 180534–180543.

[40] Deng H, Geng Z, 2020, Radar Networks. CRC Press, Boca Raton.
[41] Geng Z, Xu RH, Deng H, 2020, LTE-Based Multistatic Passive Radar System for UAV Detection. IET Radar, Sonar & 

Navigation, 14(7): 1088–1097.
[42] Ma ZY, Huang Z, Lin AN, et al., 2020, LPI Radar Waveform Recognition Based on Features from Multiple Images. 

Sensors, 20(2): 526–552.
[43] Kokalj-Filipovic S, Miller R, Chang N, et al., 2019, Mitigation of Adversarial Examples in RF Deep Classifiers Utilizing 

Autoencoder Pre-Training. 2019 International Conference on Military Communications and Information Systems 
(ICMCIS), IEEE Press, Montenegro, 2019: 1–6.

[44] Kechagias-Stamatis O, Aouf N, 2021, Automatic Target Recognition on Synthetic Aperture Radar Imagery: A Survey. 



2023 Volume 1, Issue 1

-34-

IEEE Aerospace and Electronic Systems Magazine, 36(3): 56–81.
[45] Profeta A, Rodriguez A, Clouse HS, 2016, Convolutional Neural Networks for Synthetic Aperture Radar Classification. 

SPIE Defense and Security, IEEE Press, Maryland, 2016: 185–194.
[46] Kechagias-Stamatis O, Aouf N, 2019, Fusing Deep Learning and Sparse Coding for SAR ATI. IEEE Transactions on 

Aerospace and Electronic Systems, 55(2): 785–797.
[47] Inkawich NA, Inkawich MJ, Davis EK, et al., 2021, Bridging a Gap in SAR-ATI: Training on Fully Synthetic and Testing 

on Measured Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 2942–2955.
[48] Inkawich NA, Davis EK, Inkawich MJ, et al., 2021, Training SAR-ATI Models for Reliable Operation in Open-World 

Environments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 3954–3966.
[49] Chen SZ, Wang HP, Xu F, et al., 2016, Target Classification Using the Deep Convolutional Networks for SAR Images. 

IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4806–4817.
[50] Zhang JS, Xing MD, Xie YY, 2021, FEC: A Feature Fusion Framework for SAR Target Recognition Based on 

Electromagnetic Scattering Features and Deep CNN Features. IEEE Transactions on Geoscience and Remote Sensing, 
59(3): 2174–2187.

[51] Feng SJ, Ji KF, Zhang LB, et al., 2021, SAR Target Classification Based on Integration of ASC Parts Model and Deep 
Learning Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 10213–
10225.

[52] Li Y, Du L, Wei D, 2022, Multiscale CNN Based on Component Analysis for SAR ATI. IEEE Transactions on Geoscience 
and Remote Sensing, 60: 1–12.

[53] Wang C, Shi J, Zhou YY, et al., 2021, Semisupervised Learning-Based SAR ATI via Self-Consistent Augmentation. IEEE 
Transactions on Geoscience and Remote Sensing, 59(6): 4862–4873.

[54] Wang K, Zhang G, Xu YB, et al., 2021, SAR Target Recognition Based on Probabilistic Meta-Learning. IEEE Geoscience 
and Remote Sensing Letters, 18(4): 682–686.

Publisher’s note
Whioce Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


