
-16-

2023 Volume 1, Issue 2

Signal and Information Processing
ISSN: 2630-4805

Optimization of High Efficiency Video Coding Integer
Motion Estimation Algorithm Based on Hardware
Implementation

Yuxin Nie, Longzhao Shi*, Lin Huang
College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, Fujian, China

*Corresponding author: Longzhao Shi, slz@fzu.edu.cn

Copyright: © 2023 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

A b s t r a c t :

In order to reduce the number of cycles of the motion estimation module and
improve hardware efficiency, optimizes the small diamond search algorithm from
the perspective of hardware implementation. First, the iteration and processing
sequence of PU and CU were adjusted to solve the problem of pipeline stagnation in
the process of processing. At the same time, the parallel computing method for small
PU blocks can further improve the processing speed. This article first uses MATLAB
to implement the search algorithm, uses Verilog language to describe the hardware
circuit, the two versions use the same excitation file on the data, and compare the
intermediate values of each module for functional verification. Through the test
of multiple sets of sequences, the hardware circuit of this article needs an average
consumption of 5,800 clk for AVMP and IME processing on a 64 px × 64 px CTU.
The Arria10AX115N3F40E2SG development board is selected on the QuartusII
platform, the main frequency can reach 186 MHz, and the overall performance of the
whole pixel motion estimation module can reach 1080p @ 61 fs-1.

K e y w o r d s :

High-efficiency video coding
Integer-pixel motion estimation
Video coding standard
Hardware implementation
Small diamond search algorithm

Online publication: December 29, 2023

1. Introduction
With the rise of short videos and the widespread adoption
of 5G technology, there is a growing demand for ultra-
high-definition videos. Consequently, the High Efficiency
Video Coding standard (H.265/HEVC) has emerged
to meet this need. Compared to its predecessor, H.264,
H.265/HEVC adopts a similar hybrid coding framework,
including modules such as transformation, quantization,

entropy coding, intra-frame prediction, inter-frame
prediction, and loop filtering [1]. However, it differs in its
ability to perform adaptive quadtree partitioning of coding
units and improves the accuracy of intra-frame prediction.
The inter-frame mode also introduces advanced motion
vector prediction technology (AMVP) [2]. As a result,
HEVC achieves a bitstream size that is only half of
H.264 for the same video quality. Inter-frame prediction

2023 Volume 1, Issue 2

-17-

accounts for approximately 70% of the entire encoding
time in the HEVC encoding process, making optimization
of inter-frame prediction crucial for improving encoder
performance [3].

Currently, common search algorithms for HEVC
encoders include Full-search, TZ-Search, Two-dimensional
logarithmic search [4], Three-step search [5], and Four-step
search [6]. Different algorithms strike a balance between
speed and performance. Shen et al. (2013) reported that, a
fast CU size decision algorithm is proposed, which skips
motion estimation for unnecessary CU sizes through three
early termination methods based on motion uniformity,
rate-distortion cost (RD-COST), and SKIP mode [7].
However, it is less efficient for encoding images with
vigorous motion.

Many researchers have also proposed hardware-
friendly motion estimation algorithms. Fan et al. (2018)
presents an improved diamond search algorithm that
performs fine selection in the central region and coarse
selection in the peripheral region, while using a SAD
tree to record the cost data of all PUs simultaneously [8].
However, it incurs a higher hardware resource overhead.
Estefania et al. (2019) conducts an S-shaped full search
on a 128px × 128px area, using shift registers to store
reference pixels [9]. It discards one column of pixels when
searching left or right, enabling reference pixel switching
within one clock cycle. However, this approach results
in a longer overall clock cycle for the module. Cheng et
al. (2016) merges the CTU depths of the frame with the
minimum QP value in the GOP and the same position
in the previous frame to determine the maximum depth
for current CTU calculation [10]. This reduces the CTU
depth decision path from four depths to three, effectively
reducing computational complexity, but the performance
loss is not ideal. Li et al. (2014) proposes a fast algorithm
with a variable search range, which estimates the search
range of sub-blocks (PUs) using empirical formulas based
on the MV of the LCU [11]. This effectively reduces the
number of search points during motion estimation but
may not perform well for certain specific sequences.

This study adjusts the algorithm based on the
small diamond search algorithm within a hardware
implementation framework. The study employs pipelining
and parallel processing techniques to pipeline the AMVP
and IME modules, and adjust the processing order of PUs

and CUs. This addresses stalls in the pipeline caused by
the mutual referencing of AMVP and IME. The hardware
circuit processes small-size PUs in parallel, further
reducing the overall module cycle count.

2. Brief description of the algorithm
2.1. Small diamond search algorithm
In a frame, the motion vector (MV) of each PU is closely
related to its adjacent PUs. Therefore, HEVC introduces
the AMVP algorithm to determine the search starting
point and speed up the search process. The search process
of the small diamond search algorithm is shown in Figure
1, where the numbers represent the search order, and
the search starting point is determined by the result of
AMVP. Each search requires calculating the SAD (Sum
of Absolute Differences) cost corresponding to a total of
5 points, including the center point and its upper, lower,
left, and right points. After a search, cost comparison is
performed to determine whether iteration is needed or if
the search for the next PU can be started. The criterion
for judgment is whether the point with the minimum
cost is the center point. If not, iterative searching is
performed with the point of minimum cost as the center
point until the point with the minimum cost is the center
point or the maximum number of iterations is reached
(the maximum number of iterations in this study is set to
64). Compared with the TZ-Search algorithm in the video
coding standard code HM16.7, the small diamond search
algorithm only increases the BD rate by 0.5% on average
while reducing the number of search points by 72.9%
on average [12]. Therefore, the small diamond search
algorithm can significantly reduce the amount of search
data and improve hardware processing speed.

Figure 1. Small diamond search order.

2023 Volume 1, Issue 2

-18-

On the HM16.7 platform, the proportion of
asymmetric mode partitions for CUs is only 6.43% [13].
Performance testing was conducted on HM16.7 with the
asymmetric partition mode for CUs disabled, and the
results are shown in Table 1. As can be seen from the
table, disabling the asymmetric mode reduces the overall
encoding time by an average of 13.2% and increases the
BD rate by an average of 0.687%. Not all PUs in HM
execute the asymmetric mode; only CUs with sizes of
32px × 32px and 16px × 16px activate the asymmetric
mode [15]. Different partition methods correspond to
different asymmetric modes. PUs of 2N px × N px
only undergo two types of asymmetric partitions: 2N
px × nD px and 2N px × nU px, while PUs of N px ×
2N px only undergo nL px × 2N px and nR px × 2N px
asymmetric partitions. PUs of 2N px × 2N px require all
four asymmetric partitions mentioned above. Therefore,
disabling the asymmetric mode only reduces complexity
by 13.2%. However, for hardware implementation, as
long as there are PUs that require asymmetric processing,
corresponding hardware circuits need to be prepared.
Since most PUs do not require asymmetric mode,
this results in low utilization of hardware circuits and
wastage of hardware resources. Additionally, disabling
the asymmetric mode reduces the number of PUs that a
CU needs to process from 13 to 5. For a CTU with a size
of 64px × 64px, it can be divided into 85 CUs through
quadtree partitioning. Thus, processing a CTU reduces the
number of PUs traversed from 1,105 to 425, effectively
reducing processing time with minimal performance loss.
In summary, the motion estimation module only performs

symmetric partitioning for CUs.
C h e n e t a l . (2 0 1 8) p r e s e n t a h a r d w a r e

implementation based on the small diamond search
algorithm [12]. The IME process for PUs adopts serial
computation, where the iteration judgment result of the
current PU determines whether the next processing is for
a new PU block or an iteration of the current PU block.
This processing method is logically clear and simple
to implement. However, due to waiting for iteration
judgment results, the data processing within each
hardware module is intermittent, leading to inefficient
hardware operation. Additionally, Chen et al. (2018)
adopts a layer-by-layer search for CUs, with each layer
executed sequentially in a Z-scan manner [12]. The five
PUs within a CU are also executed sequentially. Since
adjacent CUs refer to each other’s IME results, this can
also cause stalls in hardware processing.

For high frame rate and high-definition videos, it is
not feasible to adopt the hardware processing architecture
from Chen et al. (2018) to achieve real-time encoding
[12]. In the study of Chen et al. (2018), the processed
CTU size is 16px × 16px, which includes a total of 25
PUs, resulting in a relatively small overall data volume
[12]. This study aims to process CTUs with a size of
64px × 64px, containing 425 PUs. Therefore, adopting
the aforementioned method cannot achieve the desired
throughput target. Based on the small diamond search
algorithm, this study optimizes the processing methods
for PUs and CUs, adjusts the processing order of CUs
and PUs, and effectively improves hardware processing
efficiency.

Table 1. Performance comparison after turning off AMP mode (%)

Sequence ∆BR ∆t

BlowingBubbles (384 px ×192 px) 0.689 -13.79

Foreman (320 px × 256 px) 1.602 -12.88

BasketballDrill (832 px × 448 px) 0.291 -11.02

RaceHorsesCtype (832 px × 448 px) 0.524 -15.85

Kimono1 (1920 px × 1024 px) 0.329 -12.48

Average value 0.687 -13.20

Note: ΔBR represents the BD change rate; Δt represents the encoding time change rate.

2023 Volume 1, Issue 2

-19-

2.2. Hardware architecture design based on
small diamond search
The hardware framework structure proposed in this study
is shown in Figure 2. The processing of a PU is mainly
divided into two major processes: AMVP processing and
IME search.

The sentence you provided is quite technical
and detailed, focusing on the processing order and
optimization of computational units (PU) and coding
units (CU) in video encoding. Here’s the translation:

“FIFO is used for data caching between two
processes to achieve parallel computing. The AMVP
process mainly includes the establishment of a candidate
list and a cost calculation comparison module. The IME
process primarily consists of calculating the addresses of
original pixels and reference pixels corresponding to the
PU, the SAD cost calculation module, and the iterative
judgment module.”

2.3. Processing order of PU
As shown in Figure 2, the AMVP process is performed
first for a PU, followed by the IME search using the
results of AMVP. To efficiently process a PU, the AMVP

and IME processes are modified to pipelined processing,
and the processing order of the PU is adjusted. For a CU
containing five PUs under three partitioning methods
(as shown in Figure 3), the AMVP processing of the PU
block with serial number 3 depends on the IME result
of the PU block with serial number 2 (similarly for PU
blocks with serial numbers 4 and 5). Therefore, the
processing order of the PU blocks is adjusted as follows:

Figure 3. PU block.

The five PUs under the CU are divided into three
groups with no mutual reference relationship in MV:
group 1 contains block 1, group 2 contains blocks 2 and
4, and group 3 contains blocks 3 and 5. The processing
order of the PU blocks is adjusted to 2, 4, 1, 3, 5. Since
there is no reference relationship between the AMVP
of blocks 2 and 4, the AMVP processing of block 4 can

5 spatial domain MVs
2 temporal domain MVs

AMVP candidate
list construction

and filtering
module

2 candidate
MVPs

2 candidate
MVPs

SADN cost

SAD cost of 5
search points

PU original pixel
and MVP reference

pixel address
calculation module

MVP_SAD
calculation and

comparison
module

Cost comparison
& CU mode
partitioning
judgment

Iterative judgmentSAD calculation
module

PU original pixel
and reference pixel
address calculation

module

AMVP
processing

result
FIFO
cache

AMVP
processing

result
FIFO
cache

Figure 2. Hardware architecture diagram.

2023 Volume 1, Issue 2

-20-

be performed simultaneously with the IME processing
of block 2. Similarly, the proposed PU processing order
inserts two unrelated blocks between two blocks with
reference relationships (e.g., blocks 2 and 3), effectively
solving the issue of stalled AMVP processing due to
waiting for IME results and reducing the overall clock
cycles of the module.

2.4. Processing order of CU
The CU processing order in Chen et al. (2018) is
hierarchical, with each layer processed in a Z-scan order
[12]. This approach results in the next CU having to wait
for the previous CU to finish before starting. The post-
processing of a CU includes cost comparison between
different partitioning methods and updating the IME to
the CTU_MV_TABLE_RAM, which can cause stalls
in the IME processing module during CU switching.
Therefore, a new CU processing order is proposed, as
shown in Figure 4, utilizing the rule that MVs between
different layers of CUs do not reference each other. The
numbers in Figure 4 represent the processing order of
the CUs, with CUs from different layers or non-adjacent
positions inserted between the processing of two adjacent
CUs. This approach ensures smooth processing between
adjacent CUs. From subsequent simulation waveforms,

it can be seen that the proposed PU and CU processing
orders enable the SAD module in IME to achieve a fully
pipelined state.

2.5. Alternating calculation and pipelined
processing of IME module for PU
IME processing involves three main steps: (1) calculating
the addresses of corresponding original pixels and
reference pixels based on PU information; (2) calculating
the SAD cost after cropping the row-input original pixels
and reference pixels; (3) comparing the costs of five
search points corresponding to the PU during a search
process and determining whether to end the current IME
process or perform iterative searching.

Due to the existence of an iterative mechanism, it is
not possible to determine whether the next process to be
handled is an iterative search of the current PU or a search
of the next PU until the iteration process is complete.
Therefore, serial processing of PUs can lead to increased
processing time and intermittent data flow within various
sub-modules (as shown in Figure 5).

To address this issue, the PU processing approach
is modified to a three-stage pipelined process. To reduce
clock cycle waste caused by judging whether to iterate
and ensure continuous data calculation within the module,

Figure 4. Processing order of CU in CTU.

Figure 5. Traditional serial processing method
for PU.

Figure 6. IME module pipeline processing.

2023 Volume 1, Issue 2

-21-

the calculation of the next PU is inserted between two
iterations (as shown in Figure 6). During the SAD
calculation of PU1, the address calculation for PU2 is
performed simultaneously. When the iterative processing
of PU1 ends, if iteration is required, the information of
PU1 is stored in the iteration FIFO. Thus, the IME has
two data sources: one is the FIFO storing the next PU’s
information, and the other is the FIFO storing the iterative
PU’s information. The iterative FIFO has a higher
priority. Before each IME starts, the data storage status
of the two FIFOs is checked to determine which FIFO to
retrieve data from.”

2.6. IME_SAD cost calculation
After performing IME processing on the five PUs
contained in the CU, the costs of three different partitions
are compared to determine the final partition method
for the CU. The formula for calculating the cost is J =
D + λR + cost. Where: The residual D is represented by
SAD during the IME process; λ is the Lagrangian factor,
which is related to the external configuration parameter
QP value and is obtained by looking up a table in the
hardware of this study; R is the number of encoding bits
for the difference between the current MV and MVP
(MVD); cost represents the cost.

T h e f o r m u l a f o r c a l c u l a t i n g S A D i s

. Since the CU is
divided into two PUs, the amount of information that needs

to be encoded increases. Therefore, an additional header bit

cost related to the partition method is added. The

calculation method is .Here, pu_

num represents the number of PUs contained after CU

partitioning.

The CTU (Coding Tree Unit) of 64px × 64px
contains a total of 425 PUs (Prediction Units), among
which there are only 3 PUs with a width of 64px. To
avoid resource wastage caused by incomplete utilization
of logical resources when processing small PUs, it is
chosen to simultaneously calculate 32-pixel operators
per clock cycle. For PU blocks with a width of 64px,
cost calculation is performed twice. Therefore, in the
AMVP (Advanced Motion Vector Prediction) module,

PU information and MVP (Motion Vector Predictor) for
64px width are stored twice consecutively in the FIFO
(First In, First Out) buffers of AMVP and IME (Integer
Motion Estimation). However, for PUs of 16px × 16px
and 8px × 8px, more than half of the processing units will
be idle. To improve the utilization of hardware resources,
the 32-point operators are divided into two independent
operators. Each operator can process PU blocks with a
width of 16px or can be combined to process 32-point
PUs. Thus, for CUs (Coding Units) with widths of 16px
and 8px, PU blocks of 2N px × 2N px and 2N px × N px
above can be processed simultaneously.

2.7. IME storage unit design
To achieve parallelism in computing units, the primary
task is to ensure that the storage unit can provide
the required data on time. Firstly, let’s explain the
requirements of the storage unit. The original pixel RAM
temporarily stores the original pixel data of a CTU in
rows, with a width of (64 × 8) bits and a depth of 64. The
search box in this study is set to extend 32 pixels around
the CTU, and considering sub-pixel interpolation requires
an additional extension of 4 pixels, the adopted search
box size is 136px × 136px. The reference pixel RAM has
a width of (136 × 8) bits and a depth of 136.

The IME address calculation module calculates the
coordinates of the current processing PU block in the
CTU and search box. Based on the y-coordinate, it outputs
the address to the reference pixel and original pixel
RAMs. The reference pixels and original pixels input to
the SAD are 136px and 64px respectively, filtered by the
x-coordinate value for the pixels input in rows. Then, the
two are subtracted, and an absolute value calculation is
performed. The appropriate SAD value is selected based
on the PU width and added to obtain the final SAD value
for a PU block. To improve the processing speed of a PU
block, the hardware simultaneously calculates the SAD
costs for 5 search points. Since the positional relationship
between the 5 search points is fixed, the reference pixels
and original pixels can be read once to calculate the costs
for all 5 points, as shown in Figure 7. The black dots in
the figure represent the 5 search points that need to be
searched simultaneously, and the solid and dashed boxes
indicate the PU blocks corresponding to each search
point. The top-left pixel coordinate of the search center

2023 Volume 1, Issue 2

-22-

is used as the starting address. In the first clock cycle, the
absolute sum of the differences between the first row of
reference pixels and original pixels gives the SAD cost
for the top search point’s first row. In the second clock
cycle, the absolute sum of the differences between the
second row of reference pixels and the delayed first row
of original pixels yields the SAD values for the first row
of the three middle search points, which only require
different filtering of the reference pixels. Similarly, the
absolute sum of differences between the second row of
reference pixels and original pixels gives the SAD cost
for the second row of the top search point. Following
this calculation method, the costs for the last row of the
5 search points are obtained with only a two-clock cycle
difference, and the reference pixels and original pixels are
read only once, improving data interaction efficiency.

Figure 7. Schematic diagram of parallel SAD (Sum of Absolute
Differences) cost calculation for 5 search points in IME.

2.8. Five-stage pipeline processing of AMVP
and IME
According to the previous arrangement, the SAD
calculation process of the IME module can achieve
continuous full pipelining. Therefore, the AMVP module
also needs to achieve this rate to match the processing

speed of the IME module. To this end, the AMVP module
should prepare the data as early as possible and store it
in the FIFO for the IME module to read. The pipeline
structure is shown in Fig 8. Each PU’s processing needs to
go through five stages, where AMVP is divided into two
stages: candidate list establishment and cost comparison.
IME is divided into three stages: IME address calculation,
SAD cost calculation, cost comparison, and iterative
judgment. Overall, the processing time of AMVP is less
than that of IME. Therefore, this study redesigned the
processing order of PUs so that there is no MV reference
relationship between two adjacent processing PUs. The
AMVP module can calculate the next PU without waiting
for the results of IME and then store information such
as MVP in the FIFO. After the IME module finishes, it
updates the obtained IMV to the CTU_MV_TABLE and
judges whether the cache FIFO is empty. If there is data
in the FIFO, the IME processing of the next PU can be
self-started. FIFOs are also used for data caching between
each stage of pipelining within AMVP and IME.

3. Comprehensive results of hardware
circuits
The hardware framework was designed using the Verilog
language. Under the Linux system, the RTL code was
simulated and compiled using Synopsys VCS software,
and timing adjustments were made to the waveforms
using Verdi software. Firstly, MATLAB was used to
print out the excitation data required by the hardware,
including reference pixels, original pixels, and reference
MVs from the upper and left CTUs. Testbench was
utilized to store the excitation data from text files in RAM
and then send a start signal. The correctness of the circuit
was verified by comparing the IME cost values and CU
partitioning methods in the hardware circuit with the data

Figure 8. Schematic diagram of the
processing pipeline for AMVP and
IME.

2023 Volume 1, Issue 2

-23-

from MATLAB. Afterward, using QuartusII software and
selecting the Arria10AX115N3F40E2SG development
board, the module resource test results are detailed in
Table 2.

Estefania et al. (2019) reported a full search method
was adopted for the search area, using shift registers to
store data [9]. When the search point moves up and down,
a row of pixels is discarded, and when it moves left
and right, each shift register moves one bit. This allows
for reference pixel switching in just one clock cycle.
However, the data repetition rate between two points in
the snake-shaped full search is high. Nevertheless, full
search has high computational complexity, requiring a
massive amount of data processing, leading to significant
hardware resource overhead and a large number of
processing cycles. Ye et al. (2014) employed a layered
search combined with parallel processing for searching [14].
Parallel computing greatly improved processing speed but
incurred significant hardware resource overhead. Gogoi
et al. (2021) first performed a rough selection, and the
step size obtained through this rough selection determined
the second search method, significantly reducing the
number of search points but requiring more storage and
hardware resources [16]. As can be seen from Table 2, the
main frequency of this study is slightly lower than that
of Estefania et al. (2019) and Ye et al. (2014), but the
hardware resource overhead is significantly smaller [9,14].
This study achieves a higher cost-effectiveness in terms of
throughput and hardware resource expenditure compared
to the three papers mentioned.

The number of cycles in the table represents the
clock cycles consumed for processing one CTU. In
this study, the average number of cycles is 5,800 clock
cycles. To visually demonstrate the effectiveness of the
proposed method, we also tested the average number

of cycles consumed for processing a 64px × 64px CTU
without changing the processing order of CU and PU,
which resulted in 9,918 clock cycles. This is because not
changing the PU/CU processing order leads to an MV
reference relationship between two adjacently processed
PU/CU blocks, requiring the IME calculation of the
previous PU block to finish before performing AMVP
on the current PU block and waiting for the processing
results of the AMVP module. Therefore, compared to
the normal sequential approach, the design scheme in
this study reduces the average number of clock cycles by
41.5% for processing one CTU.

4. Conclusion
In video coding, inter-frame motion estimation accounts
for most of the encoding time. To further improve the
processing efficiency of the encoder, optimization
of motion estimation is necessary in terms of search
methods or hardware implementation. The point with the
minimum cost in the search box must exist. The ultimate
goal of researchers is to quickly locate it using search
algorithms and efficiently calculate the cost of each
point through hardware design. In this study, the small
diamond search algorithm was optimized on the hardware
architecture, and the processing order of CU and PU
was redesigned. By adopting alternating PU processing
and pipelining, the IME module was able to achieve full
pipelining. Additionally, parallel processing of small-
sized PUs further reduced the cycle count of the module.
Through synthesis and compilation of RTL code using the
QuartusII platform, the proposed hardware architecture
consumed an average of 5,800 clock cycles for processing
a 64px × 64px CTU, with a main frequency of up to
186 MHz and comprehensive performance reaching
1080P@61 fs-1.

Table 2. Resources compared with this study and other articles

Architecture nFlip-Flops / each nLUTs / each Memory / kB nCycles / each fMain frequency / MHz Throughput / fs-1

This study 11.5 × 103 59.0 × 103 27.5 5 800 186 1080p@61

Estefania et al. (2019) 140.9 × 103 184.2 × 103 36.0 16 462 247 1080p@32

Ye et al. (2014) 246.0 × 103 44.0 × 103 373.5 3 186 200 1080p@120

Gogoi et al. (2021) 132.9 × 103 80.9 × 103 8.32 2724 353 4K@60

2023 Volume 1, Issue 2

-24-

Funding

2020 Science and Technology Innovation Team Funding Project of Fujian Higher Education Institutions

Disclosure statement
The authors declare no conflict of interest.

References
[1] Sullivan GJ, Ohm JR, Han WJ, et al., 2013, Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE

Transactions on Circuits and Systems for Video Technology, 22(12): 1649–1668.
[2] Wan S, Yang F, 2014, New Generation High-Efficiency Video Coding H.265/HEVC: Principles, Standards, and

Implementation. Publishing House of Electronics Industry, Beijing.
[3] Song B, Chang Y, Zhou N, 2006, A Fast Algorithm Based on H.264 Inter-frame Prediction. Acta Electronica Sinica, 34(1):

31–34.
[4] Jain JR, Jain AK, 1981, Displacement Measurement and Its Application in Interframe Image Coding. IEEE Transactions on

Communications, 29(12): 1799–1808.
[5] Koga T, 1981, Motion Compensated Interframe Coding for Video Conferencing. IEEE Proceedings of the National

Telecommunication Conference, New Orleans, 1981: 531–535.
[6] Po LM, Ma WC, 1996, A Novel Four-Step Search Algorithm for Fast Block Motion Estimation. IEEE Transactions on

Circuits and Systems for Video Technology, 6(3): 313–317.
[7] Shen LQ, Liu Z, Zhang XP, et al., 2013, An Effective CU Size Decision Method for HEVC Encoders. IEEE Transactions

on Multimedia, 15(2): 465–470.
[8] Fan YB, Huang LL, Hao B, et al., 2018, A Hardware-Oriented IME Algorithm for HEVC and Its Hardware

Implementation. IEEE Transactions on Circuits and Systems for Video Technology, 28(8): 2048–2057.
[9] Estefania A, Roberto G, Otoniel ML G, et al., 2019, Design and Implementation of an Efficient Hardware Integer Motion

Estimator for an HEVC Video Encoder. Journal of Real-Time Image Processing, 16(2): 547–557.
[10] Cheng X, Liu ZY, Tetsunori K, et al., 2016, Multi-Feature Based Fast Depth Decision in HEVC Inter Prediction for

VLSI Implementation. The 9th International Congress on Image and Signal Processing, Biomedical Engineering, and
Informatics, Datong, IEEE, 2016: 124–128.

[11] Li GL, Wang CC, Chiang KH, 2014, An Efficient Motion Vector Prediction Method for Avoiding AMVP Data Dependency
for HEVC. IEEE International Conference on Acoustics, Speech, and Signal Processing, Florence, IEEE, 2014: 7363–
7366.

[12] Chen Q, Shi L, Huang B, et al., 2018, A Fast Algorithm and Hardware Architecture for Motion Estimation in HEVC.
Journal of Fuzhou University (Natural Science Edition), 46(5): 636–643.

[13] Gao X, 2018, Research on Fast Algorithm and Hardware Implementation of Inter-Prediction Mode Selection in HEVC,
thesis, Fuzhou University.

[14] Ye X, Ding DD, Yu L, 2014, A Hardware-Oriented IME Algorithm and Its Implementation for HEVC. IEEE Visual
Communications and Image Processing Conference, Valletta, IEEE, 2014: 205–208.

[15] Zhang Y, Li Q, 2018, A Fast Decision Algorithm for HEVC Inter-frame Mode Based on Motion Characteristics. Computer
Engineering and Applications, 54(23): 195–202.

[16] Gogoi S, Peesapati R, 2021, Design and Implementation of an Efficient Multi-Pattern Motion Estimation Search Algorithm

2023 Volume 1, Issue 2

-25-

for HEVC/H.265. IEEE Transactions on Consumer Electronics, 67(4): 319–328.

Publisher’s note
Whioce Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

