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A b s t r a c t :

In view of the huge amount of data generated in the process of structural 
health monitoring and the huge burden on data storage, a structural damage 
identification method based on compressed sensing is proposed. This method 
first reduces the dimension of the original signal by means of compressive 
perception theory and characterizes the original damage signal by replacing 
the original signal with the compressed signal. Then, the compressed signal 
is wavelet packet decomposition and damage identification is performed by 
constructing energy eigenvectors. In order to better reflect the advantages 
of compressive perception applied to structural damage identification, the 
processed compressed signal is compared with the original signal for damage 
identification. A three-story reinforced concrete frame is simulated by finite 
element software ABAQUS, which is verified by the damage identification 
method and numerical examples. The results show that the proposed method can 
accurately identify structural damage using compressed signals and obtain more 
accurate recognition results while reducing the computational load.
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1. Introduction
During its normal usage, civil engineering structures 
are subject to various influences from both internal and 
external sources, which can cause varying degrees of 
impact. As structural damage accumulates, it affects the 
safe use of the structure. Therefore, structural health 
monitoring is of great significance. However, the amount 
of data collected during structural health monitoring is 

quite large and cannot be directly applied.
Traditional signal acquisition methods involve 

uniform sampling based on the Nyquist sampling 
theorem and signal reconstruction through interpolation 
techniques. This requires a sampling frequency of at 
least twice the highest frequency of the signal, and often 
higher in practical applications, resulting in significant 
redundancy. Compressed sensing, on the other hand, has 



2024 Volume 2, Issue 2

-2-

significant advantages in signal acquisition. It performs 
random sampling at a rate proportional to the sparsity of 
the signal, with a sampling frequency much lower than 
traditional methods. It simultaneously compresses the 
data during sampling, resulting in a smaller amount of 
observed data that contains the main information of the 
original data.

The theory of compressed sensing was formally 
proposed by Donoho et al. in 2006 and has been widely 
used in signal processing. Currently, researchers have 
introduced compressed sensing theory into structural 
health monitoring. Wang and Hao [1] were the first to 
introduce compressed sensing into structural damage 
identification in 2013. Li et al. [2] proposed an impedance 
data compression and reconstruction method that applies 
reconstructed data to structural damage identification 
using compressed sensing theory. Yao et al. [3] presented 
an iterative space-compressed sensing scheme for damage 
identification and localization, identifying damage from 
randomly collected sparse samples. Zheng and Yan [4] used 
compressed data instead of original data to characterize 
structural damage and quantitatively classify the severity 
of the damage. Chen et al. [5] obtained a small amount 
of data expressing characteristic information from the 
original data through compressed sensing theory and used 
the measured values for intelligent fault diagnosis.

In this paper, a damage identification method based 
on compressed signal processing (CSP) is proposed. The 
compressed signal is decomposed using wavelet packets 
for damage identification, avoiding the reconstruction of 
the original signal and reducing the burden of data storage 
and transmission.

2. Basic theory 
2.1. Compressed sensing 
Compressed sensing exploits the sparsity of signals 
in a certain transform domain, breaking through the 
limitations of traditional signal acquisition methods. It 
projects signals into a lower-dimensional space using 
linear random observations, compressing the signals 
and preserving damaged information during signal 
acquisition. This results in a small number of observations 
that contain the main information of the original signal, 
which can then be reconstructed using nonlinear 

optimization algorithms [6]. CSP is a research field of 
compressed sensing (CS) theory. It directly acquires 
signals in compressed form using CS, allowing for either 
the recovery of the original signal using CS reconstruction 
algorithms or post-processing directly on the compressed 
measured signals.

For a one-dimensional signal x of length N, there 
exists an N x N sparse basis Ψ, such that the signal x 
can be linearly expanded in the basis Ψ. The sparse 
representation of x is then given by:

x = Ψθ (1)
In the formula, Ψ = [Ψ1, Ψ2, …, ΨN] coefficient 

vector θ = [θ1, θ2, …, θN]T.
If there are only a few non-zero elements in θ, 

then the signal x is a sparse signal under the sparse 
transformation basis Ψ. Under these conditions, projecting 
the signal x onto an M x N dimensional observation 
matrix Φ yields an M-dimensional observation signal 
y, where M is much smaller than N. The process of 
compressed measurement can be expressed as:

y = Φx (2)
In the formula: y contains the main information 

of the original sparse signal x, and the number of 
elements in y is much smaller than that in x. By solving 
a linear system of equations, x can be reconstructed 
from y. However, since M is much smaller than N, the 
equation has infinitely many solutions, making it an 
underdetermined problem. Combining the formulas, y can 
be rewritten as:

y = Φx = ΦΨθ = Θθ (3)
In the formula, the observation matrix Φ and the 

signal’s sparse space Ψ are uncorrelated. The sensing 
matrix Θ = ΦΨ indirectly reconstructs the original signal 
x through θ, reducing the number of unknowns in the 
linear system of equations and narrowing the solution 
space. The sparsity of the original signal affects the 
reconstruction quality, so the sensing matrix must satisfy 
the restricted isometry property (RIP) condition during 
signal reconstruction [7]. That is:

  (4)

In the formula, if the sensing matrix Θ satisfies 
the RIP condition with a constrained isometry constant 
k ∈ (0, 1), then the coefficient vector θ can be uniquely 
determined by solving the convex optimization problem 
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under the l1 norm, achieving accurate reconstruction.
 (5)

Compressed sensing mainly consists of sparse 
representation, design measurement matrix, and 
reconstruction algori thm. Based on the signal 
characteristics, this paper selects discrete cosine transform 
(DCT) for sparse representation of the signal, uses a 
random Gaussian measurement matrix for compressed 
sampling of the signal, and reconstructs the signal based 
on the orthogonal matching pursuit (OMP) algorithm 
from the greedy algorithms. The reconstruction error 
between the original signal and the reconstructed signal 
is represented using an error value, and the evaluation 
metric is expressed as:

 (6)

In the formula, x̅ represents the reconstructed signal, 
x represents the original signal, and Δ represents the error 
value.

Although the traditional CS framework makes 
signal acquisition easier, it is not suitable for real-time 
monitoring due to its computationally expensive and 
power-consuming reconstruction process. In this context, 
the signal processing framework based on CSP, where 
compressed measurements carry sufficient information 
about the original signal, is more appropriate. Its inherent 
advantage is the omission of the reconstruction process, 
which also allows for the relaxation of constraints on the 
minimum number of compressed measurements imposed 
by signal recovery. This means that more undersampling 
can be performed without worrying about signal recovery.

2.2. Introduction to wavelet packet theory
Essentially, wavelet packets are a combination of a set 
of wavelet basis functions that exhibit both orthogonal 
properties and time-frequency characteristics. Wavelet 
packet analysis can simultaneously decompose both 
the low-frequency and high-frequency components of a 
signal [8]. Each layer has a different resolution, and every 
sub-band at each layer can occupy the full frequency 
range of the original signal, matching the signal spectrum 
and improving time-frequency resolution [9].

Performing an i-level wavelet packet decomposition 
on the signal x(t) yields N = 2i frequency bands, which 

can be represented as:
 (7)

In the formula, xi
j represents the j-th wavelet packet 

at the i-th level, while xi
j,k(t), u

i
j,k(t) denote the wavelet 

packet coefficients and functions, respectively.
The energy of a wavelet packet component can be 

expressed as:
 (8)

Due to the orthogonality of wavelet packets, the total 
energy Ei is equal to the sum of the energies in all signal 
components at the same scale, that is:

  (9)

2.3. Construction of energy feature vector
The energy characteristics of a signal are highly 

sensitive to changes in structural response, revealing 
some inherent features of the signal. By constructing a 
feature vector with energy as its elements, if the structure 
sustains damage, its frequency decreases, and the signal 
components obtained after decomposing the response 
signal may experience an increase or decrease in energy 
in certain components. The damage information of the 
structure is contained within these components. Wavelet 
packet decomposition allows the signal to be decomposed 
into arbitrarily fine frequency bands, enabling energy 
statistics to be performed on these bands to form a feature 
vector [10].

The energy of the signal within each frequency band 
at the i-th level is used to construct the feature vector T. 

 (10)

Let , and normalize it as follows:

 (11)

3. Numerical example
To verify the effectiveness of damage identification using 
compressed signals as described in this paper, a three-
story reinforced concrete frame structure model was 
established using the finite element software ABAQUS. 
The specific parameters of the model are as follows: beam 
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and column cross-sectional dimensions of 300 mm × 300 
mm, materials C25 and Q345, Poisson’s ratio μ of 0.3, 
elastic modulus E of 200 GPa, model span of 2800 mm, 
and story height of 2500 mm, as shown in Figure 1. For 
finite element analysis, Gaussian white noise was used 
as the excitation form, applied at the base of the model to 
excite the structure, with a duration of 20 seconds and a 
sampling frequency of 200 Hz. The acceleration response 
data of the structure was extracted from the finite element 
analysis results, and damage was simulated by reducing 
the elastic modulus of local components.

Figure 1. Schematic diagram of the structural model

The dynamic acceleration response signal of the 
top floor of the structure was obtained under white noise 
excitation, and the acceleration time history curve in 
the damaged state is shown in Figure 2. The changes 
in the first five natural frequencies of the structure in 
the damaged and undamaged states, obtained through 
structural dynamic analysis, are presented in Table 1. 
As shown in the table, there is no significant change in 

the frequencies before and after structural damage, with 
a maximum change of only 0.72%. This indicates that 
the sensitivity of natural frequency characteristics for 
structural damage identification is limited.

Figure 2. Acceleration of the damaged top floor

Structural damage identification is discussed 
using wavelet packet decomposition. The sampling 
frequency is 200 Hz, the analysis frequency is 100 Hz, 
the Dmey wavelet is chosen as the basis function, and the 
decomposition level is set to 5, resulting in 32 frequency 
bands with a bandwidth of 3.125 Hz each. To explore the 
impact of compressed response signals on identification 
results, two scenarios are established by comparing the 
identification results of uncompressed signals with those 
of compressed signals processed through compressed 
sensing. Scenario 1 involves a 30% reduction in the 
elastic modulus of local components on the top floor. 
Scenario 2 involves compressed sensing processing 
of the acceleration response obtained from Scenario 
1, using wavelet packet energy as the feature principal 
component. The signal’s energy is primarily focused 
on obtaining compressed signals for identification. The 

Table 1. Changes in the first five natural frequencies of the structure

Frequency order Undamaged Damaged 30% Frequency change/%

1 3.89 3.87 -0.51

2 6.88 6.86 -0.29

3 12.45 12.36 -0.72

4 15.32 15.25 -0.46

5 17.51 17.48 -0.17
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frequency bands corresponding to the first 16 nodes after 
wavelet packet decomposition are selected, specifically 
at nodes (5, 2), (5, 4), (5, 3), (5, 7), and (5, 8). Therefore, 
the energy values of the five wavelet packets in these 
frequency bands are chosen to form the feature vector, as 
shown in Table 2. Based on the frequency band ranges in 
Table 2, the first five natural frequencies of the structure 
are located at nodes (5, 2), (5, 4), (5, 3), (5, 7), and (5, 8). 
The changes in wavelet packet energy in characteristic 
frequency bands relative to the undamaged structure are 
presented in Table 3. When the structure is damaged, its 
frequency decreases. The energy at nodes (5, 2) and (5, 7) 
increases, while the energy at nodes (5, 4), (5, 3), and (5, 
8) decreases. The relative energy distribution of the first 
16 nodes is shown in Figure 3. To improve the robustness 
of the damage index, only the energy values from nodes 
with higher energy are typically selected. 

Working condition 2 uses the response acceleration 
obtained from working condition 1 for compressed 
sensing processing, projecting it onto a Gaussian random 
matrix to obtain compressed signals, as shown in 
Figure 4. The sampling rate is 2, and the reconstruction 
algorithm selects the OMP algorithm. The calculated 
reconstruction error is 0.0353, indicating that accurate 
signal reconstruction can be achieved with good results. 
To verify whether the compressed acceleration response 

contains most of the damage information of the original 
signal, it is used for structural damage identification. 
The compressed undamaged and damaged signals 
are decomposed using wavelet packets, and the same 
processing is performed as in working condition 1. The 
relative energy distribution of the wavelet packet energy 
on the first 16 nodes is shown in Figure 5. The energy 
changes in the characteristic frequency bands after 

Table 2. Frequency ranges corresponding to characteristic frequency bands

Node number (5,1) (5,2) (5,4) (5,3) (5,7) (5,8) (5,6) (5,5)

Frequency 
band range [0~3.13] [3.13~6.25] [6.25~9.38] [9.38~12.5] [12.5~15.63] [15.63~18.75] [18.75~21.88] [21.88~25]

Node number (5,13) (5,14) (5.16) (5,15) (5,11) (5,12) (5,10) (5,9)

Frequency 
band range [25~28.13] [28.13~31.25] [31.25~34.38] [34.38~37.5] [37.5~40.63] [40.63~43.75] [43.75~46.88] [46.88~50]

Table 3. Relative energy changes in characteristic frequency bands in working condition 1

Frequency band No damage 30% damage Energy change/%

(5,2) 4.466 5.574 +24.81

(5,4) 5.917 4.001 -32.38

(5,3) 20.653 10.296 -50.15

(5,7) 6.674 16.051 +140.5

(5,8) 11.795 8.536 -27.63

Figure 3. Distribution of wavelet packet energy in working 
condition 1 (1: No damage; 2: 30% damage)
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wavelet packet decomposition relative to the undamaged 
structure are presented in Table 4. When the structure 
is damaged, its frequency decreases, and the energy 
on nodes (5, 2), (5, 4), and (5, 7) increases, while the 
energy on nodes (5, 3) and (5, 8) decreases. From Tables 
3 and 4, it is clear that both working conditions can 
identify damage, indicating that the compressed signal 
contains most of the damage information of the original 
signal. The processed compressed signal can be used for 
structural damage identification and achieves relatively 
accurate identification results.

4. Conclusion
Addressing the issues of data storage, transmission, 
and computational burden associated with the massive 
data generated during structural health monitoring, this 
paper proposed an identification method that combines 
compressed sensing and wavelet packet analysis. 
The compressed signal processing method based on 

compressed sensing theory is applied to structural 
damage identification, and a finite element model of a 
frame structure is established and analyzed. Numerical 
simulation results showed that when performing structural 
damage identification, the changes in energy feature 
vectors obtained through wavelet packet decomposition 
are much greater than changes in signal frequency, 
indicating that energy feature vectors are more sensitive 
to structural damage. In this paper, compressed signals 
processed directly using compressed sensing are utilized 
for damage identification, demonstrating that compressed 
signals contain the main damage information of the 
original sparse signals. This approach not only reduces 
the amount of data but also ensures relatively accurate 
identification results. By comparing the effects of original 
signals and compressed signals on damage identification 
results, the superiority and feasibility of this method 
are verified, providing data support for the intelligent 
development of damage identification.

Table 4. Relative energy changes in characteristic frequency bands after compression

Frequency band No damage 30% damage Energy change/%

(5,2) 6.782 9.742 +43.64

(5,4) 4.604 9.622 +108.99

(5,3) 26.613 20.312 -23.68

(5,7) 9.813 14.121 +43.90

(5,8) 15.067 12.255 -18.66

Figure 4. Compressed response acceleration Figure 5. Distribution of wavelet packet energy in working 
condition 2 (1: No damage; 2: 30% damage)
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