
-20-

2024 Volume 2, Issue 2

Signal and Information Processing
ISSN: 2630-4805

Research Progress and Application of Approximate
Computing Technology in Digital Signal Processing

Xu Wang1,2, Ke Chen1,2, Chenggang Yan1,2, Chenghua Wang1,2, Weiqiang Liu1,2*
1School of Integrated Circuits, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu Province,
China
2Key Laboratory of Aerospace Integrated Circuits and Microsystems, Ministry of Industry and Information Technology,
Nanjing 211106, Jiangsu Province, China

*Corresponding author: Weiqiang Liu, liuweiqiang@nuaa.edu.cn

Copyright: © 2024 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

A b s t r a c t :

Approximate computing technology has attracted significant attention in the
field of signal processing. Complex algorithms and massive data volumes have
limited processing speeds and increased hardware consumption in various
applications. However, due to the redundancy of signals, precise results are not
always necessary, and acceptable results for users are often sufficient. Therefore,
the adoption of approximate computing technology can effectively reduce
computational load, improve computational efficiency, and enhance system
performance. This paper delves into different design levels of approximate
computing technology. Firstly, it introduces the characteristics of signal
processing applications. Then, it reviews recent research progress in approximate
computing technology at both the algorithmic and circuit levels. Additionally,
it explores approximate computing solutions in signal processing areas such
as communications, video imaging, and radar. Finally, the paper discusses and
provides an outlook on the future development directions in this field, offering
insights to promote the application of approximate computing technology in
signal processing.

K e y w o r d s :

Approximate computing
Emerging computing paradigms
Digital signal processing
Research progress

Online publication: December 16, 2024

1. Introduction
Compared to global energy production, the growing
demand for computational energy is facing new risks.
Currently, the amount of information bits processed and

the number of computations performed each year are
continuously increasing. It is predicted that by 2050, the
number of bits processed by global computing systems is
expected to be between 1042 and 1046. The total energy

2024 Volume 2, Issue 2

-21-

consumption of general-purpose computing continues
to grow exponentially, doubling every three years, while
global energy production increases linearly at a rate of
only about 2% per year. The rise in global computing
energy is driven by the growing demand for computation.
Although the chip-level energy per bit conversion of
computing processor units (such as CPUs, GPUs, FPGAs)
has been decreasing over the past 40 years (as indicated
by Moore’s Law), Moore’s Law is currently slowing
down as device scaling approaches physical limits. With
the continuous growth in energy demand for computing,
it is imperative to explore and adopt new computing
paradigms that significantly improve energy efficiency [1].

As a potential technology to address the power
consumption dilemma, approximate computing has
broad application prospects. It replaces traditional
computing in an imprecise manner, reducing system
power consumption and improving computational
performance by sacrificing some computational accuracy,
as shown in Figure 1. Approximate computing introduces
computational error as a new dimension beyond the
traditional design dimensions of performance and
power consumption in circuit systems. By balancing

performance, power consumption, and error in the design
space, it achieves a new optimal tradeoff point, providing
researchers with a novel design approach [2].

Digital signal processing involves sampling,
quantizing, and processing signals in a digital manner,
enabling more accurate, flexible, and reliable signal
processing through digital algorithms. This offers
tremendous opportunities for applications in various
fields such as communications, image processing, audio
processing, and biomedical engineering. Due to the fault-
tolerant characteristics of signal processing applications,
it is often unnecessary to pursue absolute or uniquely
precise results in practical applications. For example,
image processing, as an application related to human
perception, can tolerate certain errors in its computations,
allowing for a greater degree of fault tolerance in its
final results, similar to the imperfect perception of
humans themselves. Approximate computing, as a high-
performance new computing paradigm, can achieve
efficient signal processing with the goal of reducing
energy consumption and increasing computational speed.
This article combines the latest research on approximate
computing technology in the field of digital signal

Figure 1. Approximate computing
technology and its applications

2024 Volume 2, Issue 2

-22-

processing from both academia and industry, introducing
and discussing the development, current research status,
and future trends of approximate computing chips from
the circuit level, algorithm level, and application level.

2. Research progress of approximate
computing in signal processing at the
circuit level
At the circuit level, approximate computing methods
primarily include CMOS technology based on adjusting
input voltage and logical approximate computing based
on arithmetic operation units. Probabilistic CMOS
technology employs voltage over-scaling (VOS) [3] to
reduce energy consumption and critical path delay.
This is achieved by maintaining the supply voltage
for high-bit circuits while appropriately reducing the
supply voltage for low-bit circuits. This approach does
not require modifying the original circuit structure and
is simple to implement. However, VOS technology
may introduce uncontrollable errors, posing significant
challenges for subsequent applications. Currently, most
hardware-level approximate computing mainly relies on
approximate simplified designs of arithmetic operation
units and logical function modules. Numerous studies
have been conducted domestically and internationally,
proposing methods such as approximate adders,
approximate multipliers, approximate dividers, and
approximate multiply-accumulate units to achieve logical
approximation at the circuit level and simplify logical
output by reducing the number of gate circuits.

2.1. Approximate adder
The approximate adder, initially applied to asynchronous
adders, first appeared in 1996. Nowick [4] significantly
reduced the delay of asynchronous adders by introducing

an approximate inference adder, improving performance
by over 30%. In 2004, Lu [5], a researcher at Intel,
proposed the first synchronous speculative approximate
adder. By approximating precise logical functions with
coarse-grained computations, it effectively increased
the clock frequency of microprocessors. Subsequently,
researchers designed a series of speculative approximate
adders. Studies have found that in practical scenarios,
for randomly distributed operand inputs, the carry
propagation length of the adder is much shorter than
the length of the full carry chain. Therefore, faster and
higher-performance adders can be obtained by shortening
the carry chain. This includes non-segmented speculative
approximate adders and segmented speculative
approximate adders. The detailed classification of adder
approximation methods is shown in Table 1. For non-
segmented speculative approximate adders, Esposito et
al. [6] proposed a new variable-latency speculative adder
based on the Han-Carlson parallel prefix topology and
presented a new error detection network. Compared
to previous methods, this approach reduces the error
probability. For segmented speculative approximate
adders, Seok et al. [7] introduced a new approximate adder
method that only uses single input pairs to approximate
logical gates. The average error distance and average
relative error distance of this adder are significantly
better than other approximate adders considered in the
literature. Additionally, transistor-level approximate
full adders significantly reduce power consumption by
decreasing the number of transistors and basic gates. Yan
et al. [10] presented four low-cost approximate full adders.
The proposed and existing approximate full adders are
classified into two categories based on error distance.
Simulation results demonstrate that compared to existing
approximate full adders, both groups of approximate
adders achieve significant reductions in power-area-delay

Table 1. Approximation techniques for adders

Approximation method Related work Overview

Non-segmented speculative approximation Literature [6] Faster and higher-performance adders are obtained by shortening
the carry chain.Segmented speculative approximation Literature [7–9]

Transistor-level approximation Literature [10–12] Significantly reduce power consumption by reducing the number
of transistors and basic gates.

2024 Volume 2, Issue 2

-23-

product, power consumption, area, and delay.

2.2. Approximate multiplier
Compared to adders, the circuit structure of multipliers
is more complex, and the design difficulty increases
accordingly. Multipliers can be divided into fixed-point
multipliers and floating-point multipliers. Typically,
the approximate design of fixed-point multipliers does
not directly start from the transistor level, but rather
from the components and algorithmic principles of the
multiplier, namely operands, partial product generation,
partial product reduction, and final summation. The
approximation of operands originates from Mitchell’s
Logari thmic Mult ipl ier (LM), which converts
multiplication into addition in the logarithmic domain.
This type of multiplier has very low power consumption
[13]. Detailed classifications of approximation methods for
fixed-point multipliers are shown in Table 2. However,
due to the significant precision loss that often occurs
when implementing logarithms in compact circuits, this
method can only be used in applications with very high
error tolerance. A common scheme for approximating
the partial product matrix is truncation, and multipliers
designed using this method are called truncated
multipliers. Nunziata et al. [15] investigated an approximate
recursive multiplier based on a novel 4×4 multiplier
block. Through carry truncation and error compensation,
three approximate 4×4 multipliers with different trade-
offs between error and precision are designed. These
basic blocks are then used to design an 8×8 approximate
multiplier. The proposed circuit is implemented in 14 nm
FinFET technology and achieves improved performance

compared to state-of-the-art circuits. The approximation
scheme for partial product generation mainly refers to
the Booth algorithm. As the most commonly used signed
number algorithm in multiplication, the Booth algorithm
has been widely applied due to its ability to effectively
reduce the number of partial products. The structure of a
multiplier includes a partial product reduction tree, which
consists of a large number of adders and occupies more
than 50% of the entire multiplier’s area. Therefore, it is
also necessary to perform an approximate design on the
compressors in the multiplier. Zhang et al. [20] proposed
a novel 4-2 approximate compressor that complements
other compressors studied earlier and constructed a hybrid
multiplier based on compressors, constant approximation,
and error-correcting AND gates. Compared to exact
multipliers, the proposed hybrid approximate multiplier
achieves excellent trade-offs between precision and
performance, with a 66% reduction in power-delay-area
product.

Compared to fixed-point numbers, floating-point
numbers have the advantage of a wider range of data
representation capabilities. However, floating-point
operations, especially floating-point multiplication, require
a significant amount of hardware resources, making
research on approximate floating-point computation
particularly urgent. The earliest approximate floating-point
multiplier can be traced back to 2000, proposed by Tong
et al. [22]. They approximate the mantissa multiplier by
truncating the mantissa operands, effectively reducing the
energy consumption of the mantissa multiplier. However,
the error caused by truncating the mantissa operands grows
exponentially, while the reduction in power consumption

Table 2. Approximation techniques for fixed-point multipliers

Approximation method Related work Overview

Operand approximation Literature [14] Extremely low power consumption by converting binary multiplication to
addition in logarithmic domain.

Array approximation Literature [15]
Adjust the output bit width and reduce the power consumption and area of the
multiplier by directly discarding some low effective bits of the partial product
matrix.

Partial product approximation Literature [16–18] Optimize the Booth encoding results using Karnaugh maps to simplify the partial
product expression of the Booth algorithm.

Compressor approximation Literature [19–21] Significant reductions in power consumption, delay, and transistor count are
achieved by breaking the carry chain between the same stages of the compressor.

2024 Volume 2, Issue 2

-24-

is linear [23]. To address this issue, Zhang et al. [24]

proposed a method based on logarithmic conversion. By
utilizing the characteristics of logarithmic operations, it
converts mantissa multiplication into addition, thereby
reducing the demand for hardware resources. This method
partially solves the error problem caused by truncating
mantissa operands and achieves certain improvements in
energy consumption. Besides the logarithmic conversion
method, Yin et al. [25] proposed another adjustable-precision
approximate floating-point multiplier. This multiplier
combines an approximate mantissa multiplier with a
rounding unit. It approximates mantissa multiplication
using a simpler circuit structure, reducing hardware
resource consumption. Simultaneously, it rounds
the multiplication results to meet specific precision
requirements. This approximate floating-point multiplier
not only reduces energy consumption to a certain extent
but also features adjustable precision, allowing users to
perform flexible precision control based on specific needs.

2.3. Approximate dividers
Compared to approximate multipliers, research on
approximate dividers started relatively late. In the early
1960s, Mitchell proposed an approximate logarithmic
divider that converts binary operands into logarithmic
operands, introduces errors, and transforms division
operations into subtraction [13]. This operation significantly
reduces design complexity and improves performance
by sacrificing precision. However, logarithmic dividers
introduce large errors, making them unsuitable for
applications requiring high precision. Therefore,
researchers worldwide have proposed approximate design
methods specifically for dividers, mainly including array
approximation, operand approximation, and a detailed
classification of hybrid array-operand approximation

methods for dividers, as shown in Table 3.
For array approximation methods, Savio et al. [26]

presented multiple novel approximate subtractors and
utilized them to design a restored array divider. Compared
to existing designs, the proposed approximate divider
offers significant advantages in area, complexity, and
power consumption. Regarding operand approximation
methods, Wu et al. [28] introduced an energy-efficient
approximate divider based on logarithmic transformation
and piecewise constant approximation. In this design,
the range of conversion between binary and logarithm
is extended from [0,1] to [-0.5,1], and a heuristic search
algorithm is devised to find the most accurate set of
constants to approximate the reciprocal of the divisor
by minimizing statistical errors. This design achieves
higher output precision compared to the most advanced
approximate dividers. For hybrid array-operand
approximation methods, Liu et al. [30] proposed an
approximate hybrid divider. Here, an accurate restored
divider unit is used to generate the most significant bits of
the quotient for high precision, while other quotient bits
are generated using a logarithmic divider to reduce power
consumption, area, and delay.

2.4. Approximate multiply-accumulate units
In recent years, with the in-depth study of deep neural
networks, approximate multiply-accumulate units
(AMACs) have attracted widespread attention. In
deep neural networks, convolution operations account
for over 90% of the computational workload, and the
multiply-accumulate unit (MAC), as one of the primary
operations, consumes a significant amount of energy.
Since 2017, researchers have begun exploring the use of
approximate multipliers and approximate adders for the
approximate design of MACs. Approximation methods

Table 3. Approximation techniques for dividers

Approximation method Related work Overview

Array approximation Literature [26, 27] Approximate design of subtractors in traditional array structures to reduce the
complexity of the divider array.

Operand approximation Literature [28, 29] Truncation of operands, or truncation starting from the first 1, significantly
reduces computation delay and energy with minimal precision loss.

Hybrid array-operand
approximation Literature [30] Optimization of Booth encoding results using Karnaugh maps to simplify the

partial product expression of the Booth algorithm.

2024 Volume 2, Issue 2

-25-

for multiply-accumulate units mainly include multiplier
approximation, adder approximation, and the detailed
classification of approximation methods for merged
multiply-add arrays, as shown in Table 4.

Yin et al. [25] explored the use of asynchronous
approximate multiply-accumulate operators and
investigated how to leverage the advantages of
asynchronous circuits while mitigating their inherent
area overhead. By analyzing three approximate MAC
architectures with different error rates and area trade-offs,
a comparison is made between precise and approximate,
synchronous and asynchronous MAC operators.
Experiments demonstrate that, under different controlled
error rates, the area overhead of asynchronous MACs
can be significantly reduced by reusing approximate
multipliers. Shriram et al. [27] studied the application
of approximate adders in the final stage of multiply-
accumulate units and proposed a design flow based
on synthesis tools. The applied 28 nm CMOS design
example shows that this design can achieve a 14% power
gain with a marginal decrease in image quality. Wu et al.
[28] presented a novel approximate multiply-accumulate
unit that utilizes static segmentation to compute Y =
A×B+C. The proposed architecture employs a unique
carry-save adder and segments the three operands A,
B, and C to reduce hardware costs. The performance of
the proposed approximate multiply-accumulate unit is
superior to existing technologies, significantly reducing
power consumption.

3. Research progress of approximate
computing at the algorithmic level in
signal processing
Approximate computing in signal processing algorithms

primarily focuses on two directions: approximate filtering
and approximate transformation. These studies aim to
meet specific application requirements by introducing
approximate computing techniques while reducing
computational complexity and energy consumption.
Approximate filtering is an important research direction
widely used in tasks such as denoising, smoothing,
and edge detection. Its goal is to reduce computational
resources and energy consumption while maintaining
filtering effectiveness. On the other hand, approximate
transformation plays a crucial role in tasks like frequency
domain analysis, compression, and feature extraction. Its
objective is to lower computational complexity through
approximate computing techniques while preserving the
accuracy of transformation results.

3.1. Approximate filtering algorithms
In recent years, approximate filtering algorithms have
garnered significant research attention due to their ability
to enhance filtering speed by reducing computational
precision and simplifying computational processes.
Driven by approximate computing, researchers have
conducted a series of explorations targeting approximate
FIR filters. For instance, Jiang et al. [38] proposed a fixed-
point finite impulse response adaptive filter employing
an approximate distributed algorithm. This design utilizes
a radix-8 Booth algorithm to reduce the number of
partial products in the distributed algorithm architecture.
Additionally, it approximates the generation of partial
products by truncating input data and performing error
compensation. To further lower hardware costs, an
approximate Wallace tree is utilized for the accumulation
of partial products. Consequently, this design significantly
reduces delay, area, and power consumption.

Esposito et al. [39] presented a quality-scalable

Table 4. Approximation techniques for multipliers and accumulators

Approximation method Related work Overview

Multiplier approximation References [31, 32] Design approximate MACs by segmenting the multiplication operands.

Adder approximation References [33, 34]
Reduce power consumption by applying approximate adders to the final
carry-propagate adder of signed MAC units, while adjusting input voltage
using VOS.

Merged approximation of
multiplication and addition arrays References [35–37] Design approximate MAC units by inserting accumulation into the

multiplication partial product array.

2024 Volume 2, Issue 2

-26-

approximate Least Mean Square (LMS) filter where the
level of approximation during runtime can be altered
by adjusting an external quality knob. This method
introduces approximation at the algorithmic level. By
freezing the updates of certain coefficients, the filter can
automatically enter a low-power approximate mode.

Meanwhile, Di Meo et al. [40] proposed a novel
approximate implementation method for the Delayed
Least Mean Square (DLMS) filter, which updates filter
coefficients based on the magnitude of the error signal.
Compared to the original DLMS algorithm, the proposed
filter achieves a power savings of 53.7%.

Furthermore, Monteiro et al. [41] explored the
combination of multiplier-free multiple constant
multiplication and approximate computing techniques
in Gaussian filters. It investigates the impact of three
different kernel sizes on image processing. Utilizing a
replication strategy, the study evaluates the influence
of approximating the least significant bits of adders at
various levels. The results demonstrate that all evaluated
kernel sizes can reduce power consumption and area.

3.2. Approximate transformations
Approximate transformations primarily include
approximate fast Fourier transforms and approximate
discrete cosine transforms. The fast Fourier transform
is a commonly used method for frequency domain
transformation, widely applied in areas such as spectrum
analysis, filtering, and signal compression in signal
processing. Discrete cosine transforms are extensively
used in fields like image and audio compression,
as well as signal feature extraction. By introducing
moderate approximation techniques into transformation
calculations, efficient signal processing can be achieved
while reducing computational complexity and resource
consumption.

3.2.1. Approximate fast Fourier transform
The Discrete Fourier Transform (DFT) is one of the
essential computations in digital signal processing.
However, due to its high computational complexity
and large computational requirements, it has not been
widely used. Since the introduction of the Fast Fourier
Transform (FFT) algorithm based on time decimation in
1965, the computation speed of the DFT algorithm has

increased by nearly 100 times. The FFT algorithm has
experienced rapid development and garnered significant
academic attention. Later, Bergland [42] proposed high-
radix algorithms based on the 2-point FFT algorithm,
such as radix-4 and radix-8, to reduce computational load.
Typically, the size of FFT processing is represented using
powers of 2. However, the Long Term Evolution (LTE)
system of universal mobile communication technology
involves 1536-point FFT calculations, increasing the
difficulty of hardware design. To address this, Elango
and Muniandi [43] optimized the algorithm to reduce the
number of multipliers and replaced the precise multipliers
of radix-2 butterfly units with approximate multipliers.
This results in a 40% increase in logic utilization and a
33% improvement in speed for the FFT processor. As
it is difficult to directly correlate the precision of basic
units with the overall precision of the FFT processor,
approximation design schemes based on basic units
face challenges in achieving designs tailored to specific
precision requirements, leading to poor portability. Liu
et al. [44] employed an 8-stage radix-2 single-path delay
feedback FFT and a precision adaptive adjustment
architecture, along with multi-voltage approximate
multiplication and addition. This approach reduces power
consumption by 76% for voice keyword recognition
while maintaining comparable accuracy. Liu et al. [45]

presented two approximate bit-width selection algorithms
for FFT processors with specific precision requirements.
These algorithms facilitate the identification of bit-width
combinations at various stages of the FFT processor
that meet precision requirements while minimizing
resource usage or latency, thereby enhancing hardware
performance.

3.2.2. Approximate discrete cosine transform
Computing the traditional 8-point Discrete Cosine
Transform (DCT) requires 64 multiplications and 56
additions, making it necessary to investigate fast DCT
transformation algorithms. Currently, research on fast
DCT algorithms can be broadly classified into two
categories. One category focuses on reducing the number
of floating-point multipliers and adders in the DCT.
In 1977, Chen et al. [46] proposed a fast algorithm for
DCT using sparse matrix decomposition based on the
symmetry of the transformation matrix. This algorithm

2024 Volume 2, Issue 2

-27-

computes the 8-point DCT with only 16 multiplications
and 26 additions. However, this fast algorithm still
requires floating-point multiplication, where the power
consumption of the multipliers accounts for 40% of the
total power consumption, and the hardware complexity
represents 45% of the overall hardware complexity.
This structure is slow in both hardware and software
implementations.

Another category of research on fast DCT
algorithms aims to reduce hardware overhead by utilizing
a multiplier-free integer DCT fast algorithm. One such
integer DCT fast algorithm decomposes DCT coefficients
into a sparse matrix (where matrix elements only include
0, ±1/2, ±1, or ±2) multiplied by a diagonal matrix. Under
image compression conditions, the diagonal matrix can
be simply incorporated into the quantization step of
the image compression process [47,48]. Therefore, in this
case, the complexity of DCT computation is related to
the complexity of the sparse matrix. Since the elements
in the sparse matrix only consist of powers of 2 such
as {0, ±1/2, ±1, ±2}, the computation process becomes
multiplier-free. Another integer DCT fast algorithm is
based on Multiple Constant Multiplication (MCM). This
method multiplies all elements in the matrix by a large
value and then rounds them to the nearest integer [49,50].
To further reduce computational complexity, integer
multipliers are replaced with shift and add operations.

4. Approximate computing and its
applications in signal processing
Approximate computing is widely used in signal
processing, including wireless communication systems,
video and image processing, and radar signal processing.
In wireless communication, approximate computing can
enhance system performance and efficiency and reduce
computational complexity and power consumption,
such as reducing computational requirements in wireless
signal modulators and demodulators. In video and image
processing, approximate computing can accelerate
processing speed, reduce resource consumption,
and adapt to various platforms and devices. In radar
signal processing, approximate computing can be
applied to tasks such as power spectrum estimation,
target recognition, and parameter estimation to

reduce computational complexity, improve real-time
performance and scalability, and meet the demands of
complex environments.

4.1. Applications of approximate computing in
wireless communication systems
As we enter the era of the Internet of Everything,
communication between devices is becoming more
frequent, and the amount of data is constantly increasing,
making floating-point units (FPUs) extremely important.
As the foundation of the Internet of Everything, wireless
communication systems widely use FPUs. Given the
inherent error tolerance of wireless communication
systems, more and more researchers are focusing on
the study of approximate FPUs and their application in
wireless communication systems to effectively reduce
energy consumption within a certain error tolerance range.
In the study by Janhunen et al. [51], the authors proposed a
block floating-point enhanced filter matrix computation
unit architecture for multiple-input multiple-output
orthogonal frequency-division multiplexing (MIMO-
OFDM) communication systems. Compared with fixed-
point implementations, the block floating-point format can
significantly reduce the total circuit area while reducing
bit width without degrading bit error rate performance.
Wireless communication systems often involve large-
scale and complex matrix inversion operations, and
orthogonal triangular decomposition is a commonly used
solution for matrix inversion. Therefore, another literature
[52] proposed a 4x4 matrix design based on floating-point
arithmetic, which effectively increases data throughput
during orthogonal triangular decomposition. Furthermore,
Hu and Koibuchi [53] proposed the use of approximate
floating-point compression to accelerate Message Passing
Interface (MPI) communication on lossy interconnection
networks. By designing an application-level fast
approximate compression algorithm and proposing a
key bit-flipping recovery scheme optimized for a given
bit error rate under lossy interconnection networks, data
transmission volume is significantly increased within a
certain error range.

4.2. Applications of approximate computing in
video and image processing
With the widespread popularity of multimedia

2024 Volume 2, Issue 2

-28-

applications, the demand for video and image processing
is increasingly urgent, leading to significant research
interest in the hardware implementation of low-power
video and image processing applications. Since images
and videos are tolerant of a certain degree of error, many
researchers attempt to strike a balance between video
and image output quality and energy consumption,
significantly improving energy efficiency by sacrificing
video and image accuracy to some extent. Park et al. [54]

proposed an algorithm that can dynamically adjust the
bit width of operands in the DCT hardware structure
based on the differences in error sensitivity among 64
DCT coefficients in the DCT algorithm. Snigdha et
al. [55] investigate the approximate feasibility of basic
operational units (adders/multipliers) within the DCT
based on the Loemer algorithm. Based on the varying
impacts of errors introduced by adders/multipliers at
different computational stages in the Loemer algorithm
on the final output result, they proposed a mathematical
model that can inversely derive the appropriate bit width
for each operational unit given an output error budget
to maximize power savings. However, these methods
only approximate some computational units in the JPEG
encoder hardware structure, resulting in limited power
reduction. Another effective method to reduce power
consumption is to introduce low-voltage technology
into JPEG encoder circuit design. Pu et al. [56] presented
a JPEG encoder designed in a 65 nm CMOS process
capable of operating at a wide voltage range of 0.4 to
1.2V. To improve throughput, the encoder employs four
parallel driver modules and one Huffman encoding
module, where each driver module consists of a pair
of DCT and quantization modules. The driver modules
and Huffman module operate at different voltages and
clock frequencies. In the sub-threshold region, the driver
modules can operate normally at a minimum voltage of
400 mV and a frequency of 2.5 MHz, while the Huffman
module runs at a voltage of 600 mV and a frequency of
10 MHz.

4.3. Applications of approximate computing in
radar signal processing
Conventional compressed sensing radar imaging methods
not only enable scene imaging but also reduce the
required amount of data, i.e., the sampling rate. However,

these methods have high computational complexity
and greater demand for computer memory. Therefore,
the introduction of approximate computing techniques
can reduce computational complexity and memory
consumption. Fang et al. [57] proposed a new compressed
sensing synthetic aperture radar (CS-SAR) imaging
method that utilizes approximate observation operators
to significantly reduce computational complexity and
memory consumption, making it suitable for CS-SAR
imaging systems with large data volumes or large scenes.
The CS-SAR imaging method based on approximate
observation is sometimes also referred to as the range-
azimuth decoupled CS-SAR imaging method [58].
Compared to traditional CS-SAR imaging methods, the
approximate observation-based CS-SAR imaging method
can significantly reduce memory consumption and the
computational complexity of single steps in iteration.
However, since the phase angles of SAR images are
always random, this poses difficulties in processing
complex-valued SAR images. Li et al. [59] presented a
magnitude-phase separation method for CS-SAR imaging
based on approximate observation. Compared to existing
methods, this approach only applies sparse constraints
to the magnitude of smooth components, while phase
angles remain random, resulting in better reconstruction
capabilities. Additionally, due to the inherent low memory
requirements of approximate observation, the proposed
method requires less memory overhead. In the presence
of phase errors, synthetic aperture radar reconstructed
images can exhibit defocusing. Li et al. [60] proposed a
phase error correction method for compressed sensing
radar imaging based on approximate observation.
Compared to traditional methods, this approach offers
better image-focusing capabilities and reduced memory
overhead.

5. Reflection and outlook
Currently, approximate computing technology is
continuously evolving in the field of signal processing,
providing efficient and scalable solutions for processing
large-scale signal data. With the widespread adoption
of mobile devices and the Internet of Things, there
is an increasing demand for low-power and efficient
signal processing hardware. In the future, approximate

2024 Volume 2, Issue 2

-29-

computing technology will focus on developing high-
performance signal processing hardware platforms
suitable for resource-constrained environments.
Simultaneously, as the importance of machine learning
in signal processing continues to grow, there will be a
greater emphasis on combining approximate computing
techniques with machine learning to achieve faster and
more accurate signal processing tasks. With the rapid
development of edge computing and the Internet of
Things, signal processing tasks are no longer limited to
central servers or the cloud but are distributed across
multiple edge devices. Future approximate computing
technology will prioritize distributed and collaborative
processing, enabling multiple devices to work together
to complete signal processing tasks, improving response
speed and system fault tolerance.

However, the larger-scale application and
deployment of approximate computing technology in
the field of signal processing still face some significant
challenges. These challenges primarily involve theoretical
issues of error analysis in approximate design, design
versatility, and systematic design methodology.

(1) Theoretical issues of error analysis in
approximate design: Since approximate design
inherently introduces errors, analyzing these
errors theoretically can reduce them to some
extent and facilitate the selection of the desired
level of approximation. However, due to the
varying sensitivity of different approximation
modules to errors, considering the impact of
errors from different modules on the overall
system accuracy and determining the relative
weight of errors from different modules
compared to system errors remain topics of
current research in approximate computing.
Currently, there are analytical theories for the
maximum error of approximate logarithmic
multipliers, and related studies compensate for
truncation-induced errors through probabilistic
analysis. Nevertheless, these error analyses
have not yet formed a systematic theoretical
model. Therefore, establishing a systematic error
model for different modules will aid in selecting
arithmetic units with varying degrees of
approximation in different application scenarios.

(2) Issues of generality in approximate computing
design: The current design optimization of
approximate computing mainly focuses on a
single design level, such as introducing the
idea of approximate computing in specific
applications. This approach demonstrates
good results in specific applications but has
limited applicability and lacks generality.
Addit ional ly, research on approximate
computing algorithms tends to favor the design
of specialized algorithms to meet the needs of
specific tasks or domains. While this method
can achieve high performance and efficiency,
there are limitations in terms of general design.
To address these issues, further research on
general design methods is needed. This includes
integrating approximate computing techniques
across multiple levels and pursuing hardware-
software co-design. It requires designing
general approximate computing methods
at the algorithmic level and implementing
corresponding support and optimization at the
architecture and hardware design levels. Through
hardware-software co-design, the energy
efficiency potential of approximate computing
can be better explored, and efficient, scalable,
and general approximate computing solutions
can be achieved in various domains.

(3) Issues of systematic design methods for
approximate computing: Since approximate
computing techniques can be widely applied
at different levels of computing systems,
including hardware, software, and architecture
layers, and the measurement metrics required
for approximate computing at different levels
are inconsistent (for example, error metrics
for the hardware level are not suitable for
measuring errors in upper-layer applications),
there is currently a lack of systematic design
guidance for approximate computing. Therefore,
in subsequent research, it is necessary to
systematically design and evaluate approximate
computing across multiple levels and propose
relevant measurement metrics for systematic
approximate computing techniques. Meanwhile,

2024 Volume 2, Issue 2

-30-

system-level optimization methods can
be employed in the systematic design of
approximate computing. This includes model-
based design space exploration and optimization
to find the best configuration and parameter
settings for approximate computing while
meeting requirements such as performance,
power consumption, and accuracy.

6. Conclusion
This article provides a comprehensive overview of
approximate computing techniques for signal processing,
summarizing recent research progress and applications
in this field. By adopting approximate computing
techniques, the efficiency and performance of signal
processing systems can be effectively improved.
Future research directions include further optimizing
approximate computing methods and improving
approximate error analysis. These research outcomes will
offer important references for the study and application of
signal processing.

Funding
(1) National Key Research and Development Program of China for Young Scientists (2022YFB4500200)
(2) National Natural Science Foundation of China (62101252, 62022041)

Disclosure statement
The authors declare no conflict of interest.

References
[1] Liu W, Lombardi F, 2022, Approximate Computing, Springer, Cham, 365–368.
[2] Liu W, Lombardi F, Schulte M, 2020, Approximate Computing: From Circuits to Applications. Proceedings of the IEEE,

108(12): 2103–2107.
[3] Chippa VK, Mohapatra D, Roy K, et al., 2014, Scalable Effort Hardware Design. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 22(9): 2004–2016.
[4] Nowick SM, 1996, Design of a Low-Latency Asynchronous Adder Using Speculative Completion. IEE Proceedings

Computers and Digital Techniques, 143(5): 301–307.
[5] Lu SL, 2004, Speeding Up Processing with Approximation Circuits. Computer, 37(3): 67–73.
[6] Esposito D, De Caro D, Napoli E, et al., 2015, Variable Latency Speculative Han-Carlson Adder. IEEE Transactions on

Circuits and Systems I: Regular Papers, 62(5): 1353–1361.
[7] Seok H, Seo H, Lee J, et al., 2022, A Novel Efficient Approximate Adder Design Using Single Input Pair Based

Computation, 2022 19th International SoC Design Conference (ISOCC), Gangneung-si, Korea, 57–58.
[8] Seo H, Kim Y, 2023, A Low Latency Approximate Adder Design Based on Dual Sub-Adders with Error Recovery. IEEE

Transactions on Emerging Topics in Computing, 11(3): 811–816.
[9] Manohar PS, Rohan B, Ramana PVS, et al., 2023, Implementation of Carry Look Ahead Adder with 2-Bit Approximate

Adder, 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India,
1543–1547.

[10] Yan A, Wei S, Li Z, et al., 2023, Design of Low-Cost Approximate CMOS Full Adders, 2023 IEEE International
Symposium on Circuits and Systems (ISCAS), Monterey, USA, 1–5.

2024 Volume 2, Issue 2

-31-

[11] Lagidi P, Iswarya A, Rajesh G, et al., 2021, Design of 16-Bit and 32-Bit Approximate Full Adder Using Majority Logic,
2021 2nd Global Conference for Advancement in Technology (GCAT), Bangalore, India, 1–5.

[12] Liu B, Xue A, Wang Z, et al., 2023, A Reconfigurable Approximate Computing Architecture with Dual-VDD for Low-
Power Binarized Weight Network Deployment. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(1):
291–295.

[13] Mitchell JN, 1962, Computer Multiplication and Division Using Binary Logarithms. IRE Transactions on Electronic
Computers, EC-11(4): 512–517.

[14] Kim MS, Del Barrio AA, Oliveira LT, et al., 2019, Efficient Mitchell’s Approximate Log Multipliers for Convolutional
Neural Networks. IEEE Transactions on Computers, 68(5): 660–675.

[15] Nunziata I, Zacharelos E, Saggese G, et al., 2022, Approximate Recursive Multipliers Using Carry Truncation and Error
Compensation, 2022 17th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Villasimius, Italy,
137–140.

[16] Waris H, Wang C, Liu W, et al., 2022, Hybrid Partial Product-Based High-Performance Approximate Recursive
Multipliers. IEEE Transactions on Emerging Topics in Computing, 10(1): 507–513.

[17] Shankar RG, Ananthi DR, 2023, Approximate Booth Multipliers Using Compressors and Counter, 2023 International
Conference on Inventive Computation Technologies (ICICT), Lalitpur, Nepal, 1658–1662.

[18] Liu B, Cai H, Zhang Z, et al., 2023, Multiplication Circuit Architecture for Error-Tolerant CNN-Based Keywords Speech
Recognition. IEEE Design & Test, 40(3): 26–35.

[19] Sayadi L, Timarchi S, Sheikh-Akbari A, 2023, Two Efficient Approximate Unsigned Multipliers by Developing New
Configuration for Approximate 4: 2 Compressors. IEEE Transactions on Circuits and Systems I: Regular Papers, 70(4):
1649–1659.

[20] Zhang M, Nishizawa S, Kimura S, 2023, Area Efficient Approximate 4-2 Compressor and Probability-Based Error
Adjustment for Approximate Multiplier. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(5): 1714–1718.

[21] Xie N, Zhang R, Yan H, et al., 2022, Compressors Evolution Based High Speed and Energy Efficient Approximate Signed
Multiplier, 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), Nanjing,
China, 1–3.

[22] Tong JYF, Nagle D, Rutenbar RA, 2000, Reducing Power by Optimizing the Necessary Precision/Range of Floating-Point
Arithmetic. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(3): 273–286.

[23] Eilert J, Ehliar A, Liu D, 2004, Using Low Precision Floating Point Numbers to Reduce Memory Cost for MP3 Decoding,
2004 IEEE 6th Workshop on Multimedia Signal Processing, Siena, Italy, 119–122.

[24] Zhang H, Putic M, Lach J, 2014, Low Power GPGPU Computation with Imprecise Hardware, 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), San Francisco, USA, 1–6.

[25] Yin P, Wang C, Liu W, et al., 2016, Design and Performance Evaluation of Approximate Floating-Point Multipliers, 2016
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, USA, 296–301.

[26] Savio MMD, Deepa T, Dharshini PD, et al., 2023, Design and Implementation of Approximate Divider for Error-Resilient
Image Processing Applications, 2023 Second International Conference on Electrical, Electronics, Information and
Communication Technologies (ICEEICT), Trichirappalli, India, 1–5.

[27] Shriram A, Tiwari A, Anil Kumar U, et al., 2022, Power Efficient Approximate Divider Architecture for Error-Resilient
Application, 2022 IEEE6th Conference on Information and Communication Technology (CICT), Gwalior, India, 1–6.

[28] Wu Y, Jiang H, Ma Z, et al., 2022, An Energy-Efficient Approximate Divider Based on Logarithmic Conversion and
Piecewise Constant Approximation. IEEE Transactions on Circuits and Systems I: Regular Papers, 69(7): 2655–2668.

[29] Saadat H, Javaid H, Parameswaran S, 2019, Approximate Integer and Floating-Point Dividers with Near-Zero Error Bias,

2024 Volume 2, Issue 2

-32-

2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, USA, 1–6.
[30] Liu W, Xu T, Li J, et al., 2022, Design of Unsigned Approximate Hybrid Dividers Based on Restoring Array and

Logarithmic Dividers. IEEE Transactions on Emerging Topics in Computing, 10(1): 339–350.
[31] Wuerdig RN, Sartori MLL, Abreub A, et al., 2022, Mitigating Asynchronous QDI Drawbacks on MAC Operators with

Approximate Multipliers, 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, USA, 1269–
1273.

[32] Mishra V, Pandey D, Singh S, et al., 2022, ART-MAC: Approximate Rounding and Truncation Based MAC Unit for Fault-
Tolerant Applications, 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, USA, 1640–1644.

[33] Esposito D, De Caro D, Napoli E, et al., 2017, On the Use of Approximate Adders in Carry-Save Multiplier-Accumulators,
2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, USA, 1–4.

[34] Wang Z, Wei Q, Xue A, et al., 2022, Low-Power Computing Unit Based on Heterogeneous Approximate Structure for
Binary Convolutional Neural Network, 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit
Technology (ICSICT), Nanjing, China, 1–3.

[35] Di Meo G, Saggese G, Strollo AGM, et al., 2023, Approximate MAC Unit Using Static Segmentation. IEEE Transactions
on Emerging Topics in Computing, (99): 1–12.

[36] Liu B, Zhang Z, Cai H, et al., 2022, Self-Compensation Tensor Multiplication Unit for Adaptive Approximate Computing
in Low-Power CNN Processing. Science China Information Sciences, 65(4): 149403.

[37] Liu B, Zhang R, Shen Q, et al., 2023, W-AMA: Weight-Aware Approximate Multiplication Architecture for Neural
Processing. Computers and Electrical Engineering, (111): 108921.

[38] Jiang H, Liu L, Jonker PP, et al., 2019, A High-Performance and Energy-Efficient FIR Adaptive Filter Using Approximate
Distributed Arithmetic Circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(1): 313–326.

[39] Esposito D, Di Meo G, De Caro D, et al., 2018, Quality-Scalable Approximate LMS Filter, 2018 25th IEEE International
Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 849–852.

[40] Di Meo G, De Caro D, Petra N, et al., 2022, A Novel Low-Power DLMS Adaptive Filter with Sign-Magnitude Learning
and Approximated FIR Section, 2022 17th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME),
Villasimius, Italy, 217–220.

[41] Monteiro M, Seidel I, Grellert M, et al., 2022, Exploring the Impacts of Multiple Kernel Sizes of Gaussian Filters
Combined to Approximate Computing in Canny Edge Detection, 2022 IEEE 13th Latin America Symposium on Circuits
and System (LASCAS), Puerto Varas, Chile, 1–4.

[42] Bergland G, 1969, Fast Fourier Transform Hardware Implementations: An Overview. IEEE Transactions on Audio and
Electroacoustics, 17(2): 104–108.

[43] Elango K, Muniandi K, 2020, VLSI Implementation of an Area and Energy Efficient FFT/IFFT Core for MIMO-OFDM
Applications. Annals of Telecommunications, 75(5/6): 215–227.

[44] Liu B, Ding X, Cai H, et al., 2021, Precision Adaptive MFCC Based on R2SDF-FFT and Approximate Computing for
Low-Power Speech Keywords Recognition. IEEE Circuits and Systems Magazine, 21(4): 24–39.

[45] Liu W, Liao Q, Qiao F, et al., 2019, Approximate Designs for Fast Fourier Transform (FFT) with Application to Speech
Recognition. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(12): 4727–4739.

[46] Chen WH, Smith C, Fralick S, 1977, A Fast Computational Algorithm for the Discrete Cosine Transform. IEEE
Transactions on Communications, 25(9): 1004–1009.

[47] Potluri US, Madanayake A, Cintra RJ, et al., 2014, Improved 8-Point Approximate DCT for Image and Video Compression
Requiring Only 14 Additions. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(6): 1727–1740.

[48] Da Silveira TLT, Canterle DR, Coelho DFG, et al., 2022, A Class of Low-Complexity DCT-Like Transforms for Image and

2024 Volume 2, Issue 2

-33-

Video Coding. IEEE Transactions on Circuits and Systems for Video Technology, 32(7): 4364–4375.
[49] Xing Y, Zhang Z, Qian Y, et al., 2018, An Energy-Efficient Approximate DCT for Wireless Capsule Endoscopy

Application, 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 1–4.
[50] Cai L, Qian Y, He Y, et al., 2021, Design of Approximate Multiplierless DCT with CSD Encoding for Image Processing,

2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 1–4.
[51] Janhunen J, Pitkanen T, Silven O, et al., 2011, Fixed-and Floating-Point Processor Comparison for MIMO-OFDM

Detector. IEEE Journal of Selected Topics in Signal Processing, 5(8): 1588–1598.
[52] Amin-Nejad S, Basharkhah K, Gashteroodkhani TA, 2019, Floating Point Versus Fixed Point Tradeoffs in FPGA

Implementations of QR Decomposition Algorithm. European Journal of Electrical Engineering and Computer Science,
3(5): 127.

[53] Hu Y, Koibuchi M, 2021, Accelerating MPI Communication Using Floating-Point Compression on Lossy Interconnection
Networks, 2021 IEEE 46th Conference on Local Computer Networks (LCN), Edmonton, Canada, 355–358.

[54] Park J, Choi JH, Roy K, 2010, Dynamic Bit-Width Adaptation in DCT: An Approach to Trade Off Image Quality and
Computation Energy. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 18(5): 787–793.

[55] Snigdha FS, Sengupta D, Hu J, et al., 2016, Optimal Design of JPEG Hardware Under the Approximate Computing
Paradigm, 2016 53rd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, USA, 1–6.

[56] Pu Y, De Gyvez JP, Corporaal H, et al., 2010, An Ultralow-Energy Multi-Standard JPEG Co-Processor in 65 nm CMOS
with Sub/Near Threshold Supply Voltage. IEEE Journal of Solid-State Circuits, 45(3): 668–680.

[57] Fang J, Xu Z, Zhang B, et al., 2014, Fast Compressed Sensing SAR Imaging Based on Approximated Observation. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1): 352–363.

[58]	 Jiang	C,	Zhang	B,	Fang	J,	et	al.,	2014,	Efficient	ℓq	Regularisation	Algorithm	with	Range-Azimuth	Decoupled	for	SAR	
Imaging. Electronics Letters, 50(3): 204–205.

[59] Li B, Liu F, Zhou C, et al., 2018, Mixed Sparse Representation for Approximated Observation-Based Compressed Sensing
Radar Imaging. Journal of Applied Remote Sensing, 12(3): 035015.

[60] Li B, Liu F, Zhou C, et al., 2017, Phase Error Correction for Approximated Observation-Based Compressed Sensing Radar
Imaging. Sensors, 17(3): 613.

Publisher’s note
Whioce Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

