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A b s t r a c t :

Approximate computing technology has attracted significant attention in the 
field of signal processing. Complex algorithms and massive data volumes have 
limited processing speeds and increased hardware consumption in various 
applications. However, due to the redundancy of signals, precise results are not 
always necessary, and acceptable results for users are often sufficient. Therefore, 
the adoption of approximate computing technology can effectively reduce 
computational load, improve computational efficiency, and enhance system 
performance. This paper delves into different design levels of approximate 
computing technology. Firstly, it introduces the characteristics of signal 
processing applications. Then, it reviews recent research progress in approximate 
computing technology at both the algorithmic and circuit levels. Additionally, 
it explores approximate computing solutions in signal processing areas such 
as communications, video imaging, and radar. Finally, the paper discusses and 
provides an outlook on the future development directions in this field, offering 
insights to promote the application of approximate computing technology in 
signal processing. 
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1. Introduction
Compared to global energy production, the growing 
demand for computational energy is facing new risks. 
Currently, the amount of information bits processed and 

the number of computations performed each year are 
continuously increasing. It is predicted that by 2050, the 
number of bits processed by global computing systems is 
expected to be between 1042 and 1046. The total energy 
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consumption of general-purpose computing continues 
to grow exponentially, doubling every three years, while 
global energy production increases linearly at a rate of 
only about 2% per year. The rise in global computing 
energy is driven by the growing demand for computation. 
Although the chip-level energy per bit conversion of 
computing processor units (such as CPUs, GPUs, FPGAs) 
has been decreasing over the past 40 years (as indicated 
by Moore’s Law), Moore’s Law is currently slowing 
down as device scaling approaches physical limits. With 
the continuous growth in energy demand for computing, 
it is imperative to explore and adopt new computing 
paradigms that significantly improve energy efficiency [1].

As a potential technology to address the power 
consumption dilemma, approximate computing has 
broad application prospects. It replaces traditional 
computing in an imprecise manner, reducing system 
power consumption and improving computational 
performance by sacrificing some computational accuracy, 
as shown in Figure 1. Approximate computing introduces 
computational error as a new dimension beyond the 
traditional design dimensions of performance and 
power consumption in circuit systems. By balancing 

performance, power consumption, and error in the design 
space, it achieves a new optimal tradeoff point, providing 
researchers with a novel design approach [2].

Digital signal processing involves sampling, 
quantizing, and processing signals in a digital manner, 
enabling more accurate, flexible, and reliable signal 
processing through digital algorithms. This offers 
tremendous opportunities for applications in various 
fields such as communications, image processing, audio 
processing, and biomedical engineering. Due to the fault-
tolerant characteristics of signal processing applications, 
it is often unnecessary to pursue absolute or uniquely 
precise results in practical applications. For example, 
image processing, as an application related to human 
perception, can tolerate certain errors in its computations, 
allowing for a greater degree of fault tolerance in its 
final results, similar to the imperfect perception of 
humans themselves. Approximate computing, as a high-
performance new computing paradigm, can achieve 
efficient signal processing with the goal of reducing 
energy consumption and increasing computational speed. 
This article combines the latest research on approximate 
computing technology in the field of digital signal 

Figure 1. Approximate computing 
technology and its applications
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processing from both academia and industry, introducing 
and discussing the development, current research status, 
and future trends of approximate computing chips from 
the circuit level, algorithm level, and application level.

2. Research progress of approximate 
computing in signal processing at the 
circuit level
At the circuit level, approximate computing methods 
primarily include CMOS technology based on adjusting 
input voltage and logical approximate computing based 
on arithmetic operation units. Probabilistic CMOS 
technology employs voltage over-scaling (VOS) [3] to 
reduce energy consumption and critical path delay. 
This is achieved by maintaining the supply voltage 
for high-bit circuits while appropriately reducing the 
supply voltage for low-bit circuits. This approach does 
not require modifying the original circuit structure and 
is simple to implement. However, VOS technology 
may introduce uncontrollable errors, posing significant 
challenges for subsequent applications. Currently, most 
hardware-level approximate computing mainly relies on 
approximate simplified designs of arithmetic operation 
units and logical function modules. Numerous studies 
have been conducted domestically and internationally, 
proposing methods such as approximate adders, 
approximate multipliers, approximate dividers, and 
approximate multiply-accumulate units to achieve logical 
approximation at the circuit level and simplify logical 
output by reducing the number of gate circuits.

2.1. Approximate adder 
The approximate adder, initially applied to asynchronous 
adders, first appeared in 1996. Nowick [4] significantly 
reduced the delay of asynchronous adders by introducing 

an approximate inference adder, improving performance 
by over 30%. In 2004, Lu [5], a researcher at Intel, 
proposed the first synchronous speculative approximate 
adder. By approximating precise logical functions with 
coarse-grained computations, it effectively increased 
the clock frequency of microprocessors. Subsequently, 
researchers designed a series of speculative approximate 
adders. Studies have found that in practical scenarios, 
for randomly distributed operand inputs, the carry 
propagation length of the adder is much shorter than 
the length of the full carry chain. Therefore, faster and 
higher-performance adders can be obtained by shortening 
the carry chain. This includes non-segmented speculative 
approximate adders and segmented speculative 
approximate adders. The detailed classification of adder 
approximation methods is shown in Table 1. For non-
segmented speculative approximate adders, Esposito et 
al. [6] proposed a new variable-latency speculative adder 
based on the Han-Carlson parallel prefix topology and 
presented a new error detection network. Compared 
to previous methods, this approach reduces the error 
probability. For segmented speculative approximate 
adders, Seok et al. [7] introduced a new approximate adder 
method that only uses single input pairs to approximate 
logical gates. The average error distance and average 
relative error distance of this adder are significantly 
better than other approximate adders considered in the 
literature. Additionally, transistor-level approximate 
full adders significantly reduce power consumption by 
decreasing the number of transistors and basic gates. Yan 
et al. [10] presented four low-cost approximate full adders. 
The proposed and existing approximate full adders are 
classified into two categories based on error distance. 
Simulation results demonstrate that compared to existing 
approximate full adders, both groups of approximate 
adders achieve significant reductions in power-area-delay 

Table 1. Approximation techniques for adders

Approximation method Related work Overview

Non-segmented speculative approximation Literature [6] Faster and higher-performance adders are obtained by shortening 
the carry chain.Segmented speculative approximation Literature [7–9]

Transistor-level approximation Literature [10–12] Significantly reduce power consumption by reducing the number 
of transistors and basic gates.
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product, power consumption, area, and delay.

2.2. Approximate multiplier
Compared to adders, the circuit structure of multipliers 
is more complex, and the design difficulty increases 
accordingly. Multipliers can be divided into fixed-point 
multipliers and floating-point multipliers. Typically, 
the approximate design of fixed-point multipliers does 
not directly start from the transistor level, but rather 
from the components and algorithmic principles of the 
multiplier, namely operands, partial product generation, 
partial product reduction, and final summation. The 
approximation of operands originates from Mitchell’s 
Logari thmic Mult ipl ier  (LM),  which converts 
multiplication into addition in the logarithmic domain. 
This type of multiplier has very low power consumption 
[13]. Detailed classifications of approximation methods for 
fixed-point multipliers are shown in Table 2. However, 
due to the significant precision loss that often occurs 
when implementing logarithms in compact circuits, this 
method can only be used in applications with very high 
error tolerance. A common scheme for approximating 
the partial product matrix is truncation, and multipliers 
designed using this method are called truncated 
multipliers. Nunziata et al. [15] investigated an approximate 
recursive multiplier based on a novel 4×4 multiplier 
block. Through carry truncation and error compensation, 
three approximate 4×4 multipliers with different trade-
offs between error and precision are designed. These 
basic blocks are then used to design an 8×8 approximate 
multiplier. The proposed circuit is implemented in 14 nm 
FinFET technology and achieves improved performance 

compared to state-of-the-art circuits. The approximation 
scheme for partial product generation mainly refers to 
the Booth algorithm. As the most commonly used signed 
number algorithm in multiplication, the Booth algorithm 
has been widely applied due to its ability to effectively 
reduce the number of partial products. The structure of a 
multiplier includes a partial product reduction tree, which 
consists of a large number of adders and occupies more 
than 50% of the entire multiplier’s area. Therefore, it is 
also necessary to perform an approximate design on the 
compressors in the multiplier. Zhang et al. [20] proposed 
a novel 4-2 approximate compressor that complements 
other compressors studied earlier and constructed a hybrid 
multiplier based on compressors, constant approximation, 
and error-correcting AND gates. Compared to exact 
multipliers, the proposed hybrid approximate multiplier 
achieves excellent trade-offs between precision and 
performance, with a 66% reduction in power-delay-area 
product.

Compared to fixed-point numbers, floating-point 
numbers have the advantage of a wider range of data 
representation capabilities. However, floating-point 
operations, especially floating-point multiplication, require 
a significant amount of hardware resources, making 
research on approximate floating-point computation 
particularly urgent. The earliest approximate floating-point 
multiplier can be traced back to 2000, proposed by Tong 
et al. [22]. They approximate the mantissa multiplier by 
truncating the mantissa operands, effectively reducing the 
energy consumption of the mantissa multiplier. However, 
the error caused by truncating the mantissa operands grows 
exponentially, while the reduction in power consumption 

Table 2. Approximation techniques for fixed-point multipliers

Approximation method Related work Overview

Operand approximation Literature [14] Extremely low power consumption by converting binary multiplication to 
addition in logarithmic domain.

Array approximation Literature [15]
Adjust the output bit width and reduce the power consumption and area of the 
multiplier by directly discarding some low effective bits of the partial product 
matrix.

Partial product approximation Literature [16–18] Optimize the Booth encoding results using Karnaugh maps to simplify the partial 
product expression of the Booth algorithm.

Compressor approximation Literature [19–21] Significant reductions in power consumption, delay, and transistor count are 
achieved by breaking the carry chain between the same stages of the compressor.
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is linear [23]. To address this issue, Zhang et al. [24] 

proposed a method based on logarithmic conversion. By 
utilizing the characteristics of logarithmic operations, it 
converts mantissa multiplication into addition, thereby 
reducing the demand for hardware resources. This method 
partially solves the error problem caused by truncating 
mantissa operands and achieves certain improvements in 
energy consumption. Besides the logarithmic conversion 
method, Yin et al. [25] proposed another adjustable-precision 
approximate floating-point multiplier. This multiplier 
combines an approximate mantissa multiplier with a 
rounding unit. It approximates mantissa multiplication 
using a simpler circuit structure, reducing hardware 
resource consumption. Simultaneously, it rounds 
the multiplication results to meet specific precision 
requirements. This approximate floating-point multiplier 
not only reduces energy consumption to a certain extent 
but also features adjustable precision, allowing users to 
perform flexible precision control based on specific needs.

2.3. Approximate dividers
Compared to approximate multipliers, research on 
approximate dividers started relatively late. In the early 
1960s, Mitchell proposed an approximate logarithmic 
divider that converts binary operands into logarithmic 
operands, introduces errors, and transforms division 
operations into subtraction [13]. This operation significantly 
reduces design complexity and improves performance 
by sacrificing precision. However, logarithmic dividers 
introduce large errors, making them unsuitable for 
applications requiring high precision. Therefore, 
researchers worldwide have proposed approximate design 
methods specifically for dividers, mainly including array 
approximation, operand approximation, and a detailed 
classification of hybrid array-operand approximation 

methods for dividers, as shown in Table 3.
For array approximation methods, Savio et al. [26] 

presented multiple novel approximate subtractors and 
utilized them to design a restored array divider. Compared 
to existing designs, the proposed approximate divider 
offers significant advantages in area, complexity, and 
power consumption. Regarding operand approximation 
methods, Wu et al. [28] introduced an energy-efficient 
approximate divider based on logarithmic transformation 
and piecewise constant approximation. In this design, 
the range of conversion between binary and logarithm 
is extended from [0,1] to [-0.5,1], and a heuristic search 
algorithm is devised to find the most accurate set of 
constants to approximate the reciprocal of the divisor 
by minimizing statistical errors. This design achieves 
higher output precision compared to the most advanced 
approximate dividers. For hybrid array-operand 
approximation methods, Liu et al. [30] proposed an 
approximate hybrid divider. Here, an accurate restored 
divider unit is used to generate the most significant bits of 
the quotient for high precision, while other quotient bits 
are generated using a logarithmic divider to reduce power 
consumption, area, and delay.

2.4. Approximate multiply-accumulate units 
In recent years, with the in-depth study of deep neural 
networks, approximate multiply-accumulate units 
(AMACs) have attracted widespread attention. In 
deep neural networks, convolution operations account 
for over 90% of the computational workload, and the 
multiply-accumulate unit (MAC), as one of the primary 
operations, consumes a significant amount of energy. 
Since 2017, researchers have begun exploring the use of 
approximate multipliers and approximate adders for the 
approximate design of MACs. Approximation methods 

Table 3. Approximation techniques for dividers   

Approximation method Related work Overview

Array approximation Literature [26, 27] Approximate design of subtractors in traditional array structures to reduce the 
complexity of the divider array.

Operand approximation Literature [28, 29] Truncation of operands, or truncation starting from the first 1, significantly 
reduces computation delay and energy with minimal precision loss.

Hybrid array-operand 
approximation Literature [30] Optimization of Booth encoding results using Karnaugh maps to simplify the 

partial product expression of the Booth algorithm.
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for multiply-accumulate units mainly include multiplier 
approximation, adder approximation, and the detailed 
classification of approximation methods for merged 
multiply-add arrays, as shown in Table 4.

Yin et al. [25] explored the use of asynchronous 
approximate multiply-accumulate operators and 
investigated how to leverage the advantages of 
asynchronous circuits while mitigating their inherent 
area overhead. By analyzing three approximate MAC 
architectures with different error rates and area trade-offs, 
a comparison is made between precise and approximate, 
synchronous and asynchronous MAC operators. 
Experiments demonstrate that, under different controlled 
error rates, the area overhead of asynchronous MACs 
can be significantly reduced by reusing approximate 
multipliers. Shriram et al. [27] studied the application 
of approximate adders in the final stage of multiply-
accumulate units and proposed a design flow based 
on synthesis tools. The applied 28 nm CMOS design 
example shows that this design can achieve a 14% power 
gain with a marginal decrease in image quality. Wu et al. 
[28] presented a novel approximate multiply-accumulate 
unit that utilizes static segmentation to compute Y = 
A×B+C. The proposed architecture employs a unique 
carry-save adder and segments the three operands A, 
B, and C to reduce hardware costs. The performance of 
the proposed approximate multiply-accumulate unit is 
superior to existing technologies, significantly reducing 
power consumption.

3. Research progress of approximate 
computing at the algorithmic level in 
signal processing
Approximate computing in signal processing algorithms 

primarily focuses on two directions: approximate filtering 
and approximate transformation. These studies aim to 
meet specific application requirements by introducing 
approximate computing techniques while reducing 
computational complexity and energy consumption. 
Approximate filtering is an important research direction 
widely used in tasks such as denoising, smoothing, 
and edge detection. Its goal is to reduce computational 
resources and energy consumption while maintaining 
filtering effectiveness. On the other hand, approximate 
transformation plays a crucial role in tasks like frequency 
domain analysis, compression, and feature extraction. Its 
objective is to lower computational complexity through 
approximate computing techniques while preserving the 
accuracy of transformation results.

3.1. Approximate filtering algorithms
In recent years, approximate filtering algorithms have 
garnered significant research attention due to their ability 
to enhance filtering speed by reducing computational 
precision and simplifying computational processes. 
Driven by approximate computing, researchers have 
conducted a series of explorations targeting approximate 
FIR filters. For instance, Jiang et al. [38] proposed a fixed-
point finite impulse response adaptive filter employing 
an approximate distributed algorithm. This design utilizes 
a radix-8 Booth algorithm to reduce the number of 
partial products in the distributed algorithm architecture. 
Additionally, it approximates the generation of partial 
products by truncating input data and performing error 
compensation. To further lower hardware costs, an 
approximate Wallace tree is utilized for the accumulation 
of partial products. Consequently, this design significantly 
reduces delay, area, and power consumption.

Esposito et al. [39] presented a quality-scalable 

Table 4. Approximation techniques for multipliers and accumulators

Approximation method Related work Overview

Multiplier approximation References [31, 32] Design approximate MACs by segmenting the multiplication operands.

Adder approximation References [33, 34]
Reduce power consumption by applying approximate adders to the final 
carry-propagate adder of signed MAC units, while adjusting input voltage 
using VOS.

Merged approximation of 
multiplication and addition arrays References [35–37] Design approximate MAC units by inserting accumulation into the 

multiplication partial product array.
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approximate Least Mean Square (LMS) filter where the 
level of approximation during runtime can be altered 
by adjusting an external quality knob. This method 
introduces approximation at the algorithmic level. By 
freezing the updates of certain coefficients, the filter can 
automatically enter a low-power approximate mode.

Meanwhile, Di Meo et al. [40] proposed a novel 
approximate implementation method for the Delayed 
Least Mean Square (DLMS) filter, which updates filter 
coefficients based on the magnitude of the error signal. 
Compared to the original DLMS algorithm, the proposed 
filter achieves a power savings of 53.7%.

Furthermore, Monteiro et al. [41] explored the 
combination of multiplier-free multiple constant 
multiplication and approximate computing techniques 
in Gaussian filters. It investigates the impact of three 
different kernel sizes on image processing. Utilizing a 
replication strategy, the study evaluates the influence 
of approximating the least significant bits of adders at 
various levels. The results demonstrate that all evaluated 
kernel sizes can reduce power consumption and area.

3.2. Approximate transformations 
Approximate transformations primarily include 
approximate fast Fourier transforms and approximate 
discrete cosine transforms. The fast Fourier transform 
is a commonly used method for frequency domain 
transformation, widely applied in areas such as spectrum 
analysis, filtering, and signal compression in signal 
processing. Discrete cosine transforms are extensively 
used in fields like image and audio compression, 
as well as signal feature extraction. By introducing 
moderate approximation techniques into transformation 
calculations, efficient signal processing can be achieved 
while reducing computational complexity and resource 
consumption.

3.2.1. Approximate fast Fourier transform
The Discrete Fourier Transform (DFT) is one of the 
essential computations in digital signal processing. 
However, due to its high computational complexity 
and large computational requirements, it has not been 
widely used. Since the introduction of the Fast Fourier 
Transform (FFT) algorithm based on time decimation in 
1965, the computation speed of the DFT algorithm has 

increased by nearly 100 times. The FFT algorithm has 
experienced rapid development and garnered significant 
academic attention. Later, Bergland [42] proposed high-
radix algorithms based on the 2-point FFT algorithm, 
such as radix-4 and radix-8, to reduce computational load. 
Typically, the size of FFT processing is represented using 
powers of 2. However, the Long Term Evolution (LTE) 
system of universal mobile communication technology 
involves 1536-point FFT calculations, increasing the 
difficulty of hardware design. To address this, Elango 
and Muniandi [43] optimized the algorithm to reduce the 
number of multipliers and replaced the precise multipliers 
of radix-2 butterfly units with approximate multipliers. 
This results in a 40% increase in logic utilization and a 
33% improvement in speed for the FFT processor. As 
it is difficult to directly correlate the precision of basic 
units with the overall precision of the FFT processor, 
approximation design schemes based on basic units 
face challenges in achieving designs tailored to specific 
precision requirements, leading to poor portability. Liu 
et al. [44] employed an 8-stage radix-2 single-path delay 
feedback FFT and a precision adaptive adjustment 
architecture, along with multi-voltage approximate 
multiplication and addition. This approach reduces power 
consumption by 76% for voice keyword recognition 
while maintaining comparable accuracy. Liu et al. [45] 

presented two approximate bit-width selection algorithms 
for FFT processors with specific precision requirements. 
These algorithms facilitate the identification of bit-width 
combinations at various stages of the FFT processor 
that meet precision requirements while minimizing 
resource usage or latency, thereby enhancing hardware 
performance.

3.2.2. Approximate discrete cosine transform
Computing the traditional 8-point Discrete Cosine 
Transform (DCT) requires 64 multiplications and 56 
additions, making it necessary to investigate fast DCT 
transformation algorithms. Currently, research on fast 
DCT algorithms can be broadly classified into two 
categories. One category focuses on reducing the number 
of floating-point multipliers and adders in the DCT. 
In 1977, Chen et al. [46] proposed a fast algorithm for 
DCT using sparse matrix decomposition based on the 
symmetry of the transformation matrix. This algorithm 
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computes the 8-point DCT with only 16 multiplications 
and 26 additions. However, this fast algorithm still 
requires floating-point multiplication, where the power 
consumption of the multipliers accounts for 40% of the 
total power consumption, and the hardware complexity 
represents 45% of the overall hardware complexity. 
This structure is slow in both hardware and software 
implementations.

Another category of research on fast DCT 
algorithms aims to reduce hardware overhead by utilizing 
a multiplier-free integer DCT fast algorithm. One such 
integer DCT fast algorithm decomposes DCT coefficients 
into a sparse matrix (where matrix elements only include 
0, ±1/2, ±1, or ±2) multiplied by a diagonal matrix. Under 
image compression conditions, the diagonal matrix can 
be simply incorporated into the quantization step of 
the image compression process [47,48]. Therefore, in this 
case, the complexity of DCT computation is related to 
the complexity of the sparse matrix. Since the elements 
in the sparse matrix only consist of powers of 2 such 
as {0, ±1/2, ±1, ±2}, the computation process becomes 
multiplier-free. Another integer DCT fast algorithm is 
based on Multiple Constant Multiplication (MCM). This 
method multiplies all elements in the matrix by a large 
value and then rounds them to the nearest integer [49,50]. 
To further reduce computational complexity, integer 
multipliers are replaced with shift and add operations.

4. Approximate computing and its 
applications in signal processing
Approximate computing is widely used in signal 
processing, including wireless communication systems, 
video and image processing, and radar signal processing. 
In wireless communication, approximate computing can 
enhance system performance and efficiency and reduce 
computational complexity and power consumption, 
such as reducing computational requirements in wireless 
signal modulators and demodulators. In video and image 
processing, approximate computing can accelerate 
processing speed, reduce resource consumption, 
and adapt to various platforms and devices. In radar 
signal processing, approximate computing can be 
applied to tasks such as power spectrum estimation, 
target recognition, and parameter estimation to 

reduce computational complexity, improve real-time 
performance and scalability, and meet the demands of 
complex environments.

4.1. Applications of approximate computing in 
wireless communication systems
As we enter the era of the Internet of Everything, 
communication between devices is becoming more 
frequent, and the amount of data is constantly increasing, 
making floating-point units (FPUs) extremely important. 
As the foundation of the Internet of Everything, wireless 
communication systems widely use FPUs. Given the 
inherent error tolerance of wireless communication 
systems, more and more researchers are focusing on 
the study of approximate FPUs and their application in 
wireless communication systems to effectively reduce 
energy consumption within a certain error tolerance range. 
In the study by Janhunen et al. [51], the authors proposed a 
block floating-point enhanced filter matrix computation 
unit architecture for multiple-input multiple-output 
orthogonal frequency-division multiplexing (MIMO-
OFDM) communication systems. Compared with fixed-
point implementations, the block floating-point format can 
significantly reduce the total circuit area while reducing 
bit width without degrading bit error rate performance. 
Wireless communication systems often involve large-
scale and complex matrix inversion operations, and 
orthogonal triangular decomposition is a commonly used 
solution for matrix inversion. Therefore, another literature 
[52] proposed a 4x4 matrix design based on floating-point 
arithmetic, which effectively increases data throughput 
during orthogonal triangular decomposition. Furthermore, 
Hu and Koibuchi [53] proposed the use of approximate 
floating-point compression to accelerate Message Passing 
Interface (MPI) communication on lossy interconnection 
networks. By designing an application-level fast 
approximate compression algorithm and proposing a 
key bit-flipping recovery scheme optimized for a given 
bit error rate under lossy interconnection networks, data 
transmission volume is significantly increased within a 
certain error range.

4.2. Applications of approximate computing in 
video and image processing
With the widespread popularity of multimedia 
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applications, the demand for video and image processing 
is increasingly urgent, leading to significant research 
interest in the hardware implementation of low-power 
video and image processing applications. Since images 
and videos are tolerant of a certain degree of error, many 
researchers attempt to strike a balance between video 
and image output quality and energy consumption, 
significantly improving energy efficiency by sacrificing 
video and image accuracy to some extent. Park et al. [54] 

proposed an algorithm that can dynamically adjust the 
bit width of operands in the DCT hardware structure 
based on the differences in error sensitivity among 64 
DCT coefficients in the DCT algorithm. Snigdha et 
al. [55] investigate the approximate feasibility of basic 
operational units (adders/multipliers) within the DCT 
based on the Loemer algorithm. Based on the varying 
impacts of errors introduced by adders/multipliers at 
different computational stages in the Loemer algorithm 
on the final output result, they proposed a mathematical 
model that can inversely derive the appropriate bit width 
for each operational unit given an output error budget 
to maximize power savings. However, these methods 
only approximate some computational units in the JPEG 
encoder hardware structure, resulting in limited power 
reduction. Another effective method to reduce power 
consumption is to introduce low-voltage technology 
into JPEG encoder circuit design. Pu et al. [56] presented 
a JPEG encoder designed in a 65 nm CMOS process 
capable of operating at a wide voltage range of 0.4 to 
1.2V. To improve throughput, the encoder employs four 
parallel driver modules and one Huffman encoding 
module, where each driver module consists of a pair 
of DCT and quantization modules. The driver modules 
and Huffman module operate at different voltages and 
clock frequencies. In the sub-threshold region, the driver 
modules can operate normally at a minimum voltage of 
400 mV and a frequency of 2.5 MHz, while the Huffman 
module runs at a voltage of 600 mV and a frequency of 
10 MHz.

4.3. Applications of approximate computing in 
radar signal processing
Conventional compressed sensing radar imaging methods 
not only enable scene imaging but also reduce the 
required amount of data, i.e., the sampling rate. However, 

these methods have high computational complexity 
and greater demand for computer memory. Therefore, 
the introduction of approximate computing techniques 
can reduce computational complexity and memory 
consumption. Fang et al. [57] proposed a new compressed 
sensing synthetic aperture radar (CS-SAR) imaging 
method that utilizes approximate observation operators 
to significantly reduce computational complexity and 
memory consumption, making it suitable for CS-SAR 
imaging systems with large data volumes or large scenes. 
The CS-SAR imaging method based on approximate 
observation is sometimes also referred to as the range-
azimuth decoupled CS-SAR imaging method [58]. 
Compared to traditional CS-SAR imaging methods, the 
approximate observation-based CS-SAR imaging method 
can significantly reduce memory consumption and the 
computational complexity of single steps in iteration. 
However, since the phase angles of SAR images are 
always random, this poses difficulties in processing 
complex-valued SAR images. Li et al. [59] presented a 
magnitude-phase separation method for CS-SAR imaging 
based on approximate observation. Compared to existing 
methods, this approach only applies sparse constraints 
to the magnitude of smooth components, while phase 
angles remain random, resulting in better reconstruction 
capabilities. Additionally, due to the inherent low memory 
requirements of approximate observation, the proposed 
method requires less memory overhead. In the presence 
of phase errors, synthetic aperture radar reconstructed 
images can exhibit defocusing. Li et al. [60] proposed a 
phase error correction method for compressed sensing 
radar imaging based on approximate observation. 
Compared to traditional methods, this approach offers 
better image-focusing capabilities and reduced memory 
overhead.

5. Reflection and outlook
Currently, approximate computing technology is 
continuously evolving in the field of signal processing, 
providing efficient and scalable solutions for processing 
large-scale signal data. With the widespread adoption 
of mobile devices and the Internet of Things, there 
is an increasing demand for low-power and efficient 
signal processing hardware. In the future, approximate 
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computing technology will focus on developing high-
performance signal processing hardware platforms 
suitable for resource-constrained environments. 
Simultaneously, as the importance of machine learning 
in signal processing continues to grow, there will be a 
greater emphasis on combining approximate computing 
techniques with machine learning to achieve faster and 
more accurate signal processing tasks. With the rapid 
development of edge computing and the Internet of 
Things, signal processing tasks are no longer limited to 
central servers or the cloud but are distributed across 
multiple edge devices. Future approximate computing 
technology will prioritize distributed and collaborative 
processing, enabling multiple devices to work together 
to complete signal processing tasks, improving response 
speed and system fault tolerance.

However,  the larger-scale application and 
deployment of approximate computing technology in 
the field of signal processing still face some significant 
challenges. These challenges primarily involve theoretical 
issues of error analysis in approximate design, design 
versatility, and systematic design methodology.

(1) Theoretical  issues of error analysis  in 
approximate design: Since approximate design 
inherently introduces errors, analyzing these 
errors theoretically can reduce them to some 
extent and facilitate the selection of the desired 
level of approximation. However, due to the 
varying sensitivity of different approximation 
modules to errors, considering the impact of 
errors from different modules on the overall 
system accuracy and determining the relative 
weight of errors from different modules 
compared to system errors remain topics of 
current research in approximate computing. 
Currently, there are analytical theories for the 
maximum error of approximate logarithmic 
multipliers, and related studies compensate for 
truncation-induced errors through probabilistic 
analysis. Nevertheless, these error analyses 
have not yet formed a systematic theoretical 
model. Therefore, establishing a systematic error 
model for different modules will aid in selecting 
arithmetic units with varying degrees of 
approximation in different application scenarios.

(2) Issues of generality in approximate computing 
design: The current design optimization of 
approximate computing mainly focuses on a 
single design level, such as introducing the 
idea of approximate computing in specific 
applications. This approach demonstrates 
good results in specific applications but has 
limited applicability and lacks generality. 
Addit ional ly,  research on approximate 
computing algorithms tends to favor the design 
of specialized algorithms to meet the needs of 
specific tasks or domains. While this method 
can achieve high performance and efficiency, 
there are limitations in terms of general design. 
To address these issues, further research on 
general design methods is needed. This includes 
integrating approximate computing techniques 
across multiple levels and pursuing hardware-
software co-design. It requires designing 
general approximate computing methods 
at the algorithmic level and implementing 
corresponding support and optimization at the 
architecture and hardware design levels. Through 
hardware-software co-design, the energy 
efficiency potential of approximate computing 
can be better explored, and efficient, scalable, 
and general approximate computing solutions 
can be achieved in various domains.

(3) Issues of systematic design methods for 
approximate computing: Since approximate 
computing techniques can be widely applied 
at different levels of computing systems, 
including hardware, software, and architecture 
layers, and the measurement metrics required 
for approximate computing at different levels 
are inconsistent (for example, error metrics 
for the hardware level are not suitable for 
measuring errors in upper-layer applications), 
there is currently a lack of systematic design 
guidance for approximate computing. Therefore, 
in subsequent research, it is necessary to 
systematically design and evaluate approximate 
computing across multiple levels and propose 
relevant measurement metrics for systematic 
approximate computing techniques. Meanwhile, 
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system-level optimization methods can 
be employed in the systematic design of 
approximate computing. This includes model-
based design space exploration and optimization 
to find the best configuration and parameter 
settings for approximate computing while 
meeting requirements such as performance, 
power consumption, and accuracy.

6. Conclusion
This article provides a comprehensive overview of 
approximate computing techniques for signal processing, 
summarizing recent research progress and applications 
in this field. By adopting approximate computing 
techniques, the efficiency and performance of signal 
processing systems can be effectively improved. 
Future research directions include further optimizing 
approximate computing methods and improving 
approximate error analysis. These research outcomes will 
offer important references for the study and application of 
signal processing.
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