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A b s t r a c t :  

Interleukin-1 receptor-associated kinase 1 (IRAK1) plays as a pivotal regulator 
within the innate immune signaling and inflammatory processes. Being a 
critical component in many signaling pathways, emerging evidence strongly 
suggests the involvement of IRAK1 in the pathophysiology of cancers, thereby 
rendering it an attractive target for therapeutic intervention. Notably, selective 
IRAK1-inhibitory molecules have been identified, opening promising avenues 
for the therapy of tumor. In this review, we also delve into the challenges and 
future prospects in this field, emphasizing the importance of gaining a deeper 
understanding of IRAK1 regulation in tumors and the potential of combination 
therapies targeting IRAK1.
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1. Introduction
Nowadays, it is increasingly evident that immune system 
not only comes into play in tumor suppression, known 
as cancer immunosurveillance, but also contributes to 
tumorigenesis and tumor progression [1]. Accumulating 
evidence highlights the pivotal function of interleukin-1 
receptor-associated kinases (IRAKs) family in immune 
responses as well as its altered expression in different 

types of cancer. Within the IRAKs, a serine/threonine 
kinases family, four distinct members are identifiable: 
IRAK1, IRAK2, IRAK3 (also recognized as IRAK-M), 
and IRAK4 [2]. It’s important to note that among these, only 
IRAK1 and IRAK4 exhibit kinase activity [3,4]. This review 
concentrates on the latest progress made in comprehending 
the significance of IRAK1 in the advancement of tumors as 
well as potential therapeutic interventions.
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2. The expression of IRAK1 and its 
effects in different cancers
Dysregulation and aberrant activation of IRAK1 have 
been associated with various effects on tumors (Figure 
1). The role of IRAK1 in tumor includes promoting 
tumor growth, survival, inflammation, immune evasion, 
therapeutic resistance, angiogenesis, and metastasis. Here 
are some of the effects of IRAK1 in specific tumors.

2.1. Hepatocellular carcinoma
IRAK1 exhibits significant expression in hepatocellular 
carcinoma (HCC) cell lines and tumor tissues, indicating 
its feasible involvement in HCC development, 
which contributes to cancer cell proliferation and the 
inflammatory tumor microenvironment [5]. The tumor 
suppressor serine/threonine-protein kinase 4 (STK4) 
enhances TLR3/4-activated IFN-β production through 
IRAK1 binding and phosphorylation [6]. This leads to 
IRAK1 degradation and prevents the development of 
inflammation-related HCC. Furthermore, Cheng and 
colleagues pinpointed AKR1B10 as a fresh downstream 
target of IRAK1, and AKR1B10 is usually used 
as a biomarker of HCC, underscoring a previously 
unrecognized relationship between these molecules [7].

2.2. Nasopharyngeal carcinoma
In the context of Nasopharyngeal carcinoma (NPC) 
metastasis, S100 calcium-binding protein A14 (S100A14) 

exhibits a suppressive effect on metastasis by facilitating 
the ubiquitin-mediated degradation of IRAK1, which 
blocks cellular migration in NPC [8]. Additionally, Liu 
et al. discovered that IRAK1 has potential function in 
drug resistance and poor prognosis in NPC. Specifically, 
IRAK1 is essential to the expression of S100A9, and the 
IRAK1/S100A9 axis contributes to drug resistance and 
unfavorable outcomes in NPC [9].

2.3. Low-grade glioma
Notably, comprehensive studies have substantiated that 
the high level of IRAK1 in LGG exerts an oncogenic 
function by inhibiting cell apoptosis and promoting 
LGG malignancy [10]. IRAK1 is warranted to enhance the 
prognosis and treatment outcomes for LGG patients.

2.4. Colorectal cancer
Aberrant expression of IRAK1 in colorectal cancer 
(CRC) is linked to malignant phenotypes, and targeting its 
expression could mitigate the inflammatory process and 
modulate the downregulation of epithelial-mesenchymal 
transition (EMT) in mice [11,12]. Furthermore, scientists 
have discovered that the loss of heterogeneous nuclear 
ribonucleoprotein I (hnRNRI) within the intestinal 
epithelial cells undermines the immune adaption process 
in newborns, ultimately leading to colitis and colorectal 
cancer [13].

Figure 1. The expression of IRAK1 in different tumors and their paired normal tissues. The dysregulation and aberrant expression of IRAK1 
have been subject to analysis across diverse cancer types. Utilizing data from the Cancer Genome Atlas (TCGA) database, it aimed to elucidate 
IRAK1’s potential involvement in various malignancies compared with their corresponding normal tissues. *p < 0.05; **p < 0.01; ***p < 
0.001.
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2.5. Breast cancer
Research has revealed a substantial decrease in 
the expression of IRAK1 following neoadjuvant 
chemotherapy, which aligns with a noticeable reduction 
in tumor size [13]. In the context of triple-negative breast 
cancer (TNBC), IRAK1 upregulation confers a growth 
advantage and contributes to acquired resistance to 
paclitaxel treatment [14]. Restraining the phosphorylation 
of IRAK1 has demonstrated increased apoptosis and 
reduced migration in TNBC [15].

2.6. Prostate cancer
IRAK1 exhibits significant overexpression specifically 
in prostate cancer (PCa) compared to normal tissues. 
This overexpression is particularly observed in luminal 
epithelial cells of Pca [16]. Moreover, IRAK1 is found to 
exhibit varying expression levels between benign and 
malignant samples within a patient cohort [17].

2.7. Non-small cell lung cancer
IRAK1 is highly expressed in non-small cell lung cancer 
(NSCLC) and is considered a new inflammation-related 
marker [18]. In NSCLC with epidermal growth factor 
receptor (EGFR) mutation, the IRAK1/NF-κB axis 
demonstrates a significant role in standing up to EGFR 
tyrosine kinase inhibitors(TKIs) [19]. Additionally, the 
expression of IRAK1 in non-tumor cells, such as tumor-
associated macrophages (TAMs), can negatively impact 
the anti-tumor activity against tumor cells [20].

2.8. Endometrial carcinoma
The reduction of IRAK1 expression in endometrial 
carcinoma (EC) cells led to distinct outcomes: it prompted 
cell cycle arrest and apoptosis while concurrently 
restraining cell migration and invasion [21]. Another study 
uncovered that the transfer of miR-192-5p via specific 
exosomes derived from TAMs could inhibit the IRAK1/
NF-κB signaling pathway, leading to the suppression 
of tumor formation, inhibition of EMT in EC cells, and 
promotion of EC cell apoptosis [22].

2.9. Squamous cell carcinomas
Within squamous cell carcinoma (SCC), the pro-
oncogenic impact and tumorigenic properties of 
Desmoglein 2 (Dsg2) are achieved through the alteration 

of IRAK1 and its downstream target IL-8 [23]. Furthermore, 
in Oral SCC, miR-146 is up-regulated and acts as an 
oncogenic molecule [24]. Another significant finding 
reveals that IRAK1 is transcriptionally upregulated by 
the chromatin-binding DEK protein, promoting cell 
survival [25]. In an effort to heighten the sensitivity of 
chemotherapy-resistant cells to chemotherapy, inhibiting 
IRAK1 pharmacologically can consider as a potentially 
effective cytostatic method [26].

2.10. Melanoma
Within melanoma cells, the expression of chemokines and 
cytokines associated with cancer cell survival, division, 
and the promotion of angiogenesis strongly correlates 
with the activation of IRAK1/IRAK4 signaling [27]. 
Melanoma and its stem cells could respond to the aurora 
kinase inhibitor CCT137690 because of its effect on a 
significant decrease in the expression of IRAK1 [28].

2.11. Activated B-cell-like diffuse large B-cell 
lymphoma
In activated B-cell-like diffuse large B-cell lymphoma 
(ABC DLBCL) with MyD88 mutation, IRAK1 functions 
as a scaffold protein, facilitating tumor cell proliferation 
and apoptosis [29].

2.12. Stem cell leukemia/lymphoma syndrome
IRAK1 regulates the activity of interferon-gamma 
(IFN-γ), which facilitates the accumulation of myeloid-
derived suppressor cells. These cells inhibit the T-cell 
response to leukemic cells, contributing to the progression 
of stem cell leukemia/lymphoma syndrome (SCLL) [30].

2.13. Acute myeloid leukemia
IRAK1 is implicated as an oncotarget in acute myeloid 
leukemia (AML). Targeting IRAK1 has shown promising 
results in reducing AML progenitors in vitro and 
decreasing the leukemia burden in xenograft model [31]. 
Moreover, IRAK1 has been identified as a viable target to 
overcome adaptive resistance in the FLT3-mutant subtype 
[32].

2.14. T-cell acute lymphoblastic leukemia
IRAK1 plays a critical role in T-cell acute lymphoblastic 
leukemia (T-ALL) cell proliferation and survival through 
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the stabilization of the antiapoptotic protein MCL1 [33]. 
Additionally, the DNA methylation of miR‐204 has 
been shown to promote cell proliferation and enhance 
apoptosis through IRAK1 [34].

2.15. Mixed lineage leukemias
In mixed lineage leukemias (MLL), the inhibition of 
IRAK1/4 has been shown to delay leukemia progression 
and improve survival in murine models by stabilizing the 
normal MLL protein [35].

2.16. Waldenström macroglobulinemia
Waldenström macroglobulinemia (WM) typically 
manifests with the presence of a MYD88 mutation. In 
WM cells, inhibiting the kinase activity of IRAK1/4 leads 
to apoptosis in WM cells [37].

3. Application of irak1 inhibitor in 
tumor therapy
3.1. IRAK1/4 inhibitor
The IRAK1/4 inhibitor shows potential in weakening 
the stability of the antiapoptotic protein MCL1, 
demonstrating promising potency in combination 
treatment for T-ALL with ABT-737 or vincristine [36]. In 
the context of anaplastic thyroid cancer (ATC), inhibition 
of IRAK1 exhibits anti-proliferation and anti-tumor 
effects its cell lines [37]. Moreover, combining IRAK-1/4 
Inhibitor with ABT-737 proves more effective in restoring 
white blood cell count in peripheral blood and reducing 
mortality in a T-ALL mouse model [38]. Additionally, this 
inhibitor sensitizes the curative effect of methotrexate 
chemotherapy in breast cancer cell lines [39]. In TNBC, the 
IRAK1/4 inhibitor induces massive apoptosis to reverse 
paclitaxel resistance [16]. To address MDS and eliminate 
MDS-initiating clones, an IRAK1/4 inhibitor is employed 
to impair MDS cells while preserving normal CD34 
positive cells [40]. Furthermore, the IRAK1/4 inhibitor 
decreases the expression of inflammatory cytokines and 
prevents tumor growth in colorectal cancer. Notably, 
it also inhibits EMT, effectively slowing down colitis-
induced tumorigenesis [12].

3.2. NCGC1481
NCGC1481 demonstrates a novel strategy to overcome 

adaptive resistance via inhibiting IRAK1 and its 
associated signaling [34]. This approach holds great 
promise in enhancing treatment outcomes and addressing 
the challenge of adaptive resistance in AML.

3.3. JH-X-119-01
JH-X-119-01 has been published as a highly potent and 
selective covalent inhibitor of IRAK1. In the MYD88-
mutated B-cell lymphomas, JH-X-119-01 acts as a potent 
antiproliferative effector, offering a potential therapeutic 
approach [41]. Moreover, JH-X-119-01 shows favorable 
outcomes in LPS-induced septic mice. It not only 
improves the survival of septic mice but also protects 
macrophages with reduced toxicity when compared to 
non-selective IRAK1/4 inhibitors [42]. 

3.4. Pacritinib
Recent evidence has shown that pacritinib also acts as a 
specific inhibitor of IRAK1. Building on this, pacritinib 
exerts a dual effect on the immune system and tumors 
by restraining IRAK1. It attenuates leukemogenesis 
through the suppression of CD4+/CD8+ T-cells and 
myeloid-derived suppressor cells. Furthermore, pacritinib 
demonstrates potential as an anti-pan cancer inhibitor by 
effectively inhibiting tumor proliferation via impacting 
the PD-1/PD-L1 axis and mediating immunosuppression 
[33,43].

3.5. HS-243
HS-243, a takinib analog, is used to suppress IRAK1 
in human rheumatoid arthritis, it exhibits a notable 
responsiveness to cytokine/chemokine signaling in 
fibroblast-like synoviocytes [44].

3.6. Takinib
Takinib was developed as a selective inhibitor of TAK1, 
but because of the similar ATP-binding pocket, takinib 
could also be used as the inhibitor of IRAK1 [45,46].

3.7. JNJ-1013
Recognizing the significance of IRAK1’s scaffolding 
function, which is crucial for tumor cell survival and 
distinct from its kinase activity, an IRAK1 degrader 
Degrader-3 (JNJ-1013) specifically aims to disrupt this 
function. JNJ-1013 displays valid anti-proliferative 
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properties in ABC DLBCL cells possessing MyD88 
mutation [30].

4. Conclusion
Amid its functions, IRAK1’s involvement in cancer 

emerges especially. This association emphasizes the 
potential of IRAK1 as a valuable target for therapeutic 
intervention, with selective IRAK1 inhibitors garnering 
attention. In the broader context, our comprehensive 
review unveils IRAK1’s multifaceted contributions to 
tumorigenesis, tumor immunity, and progression.
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