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Abstract: Secreted Phosphoprotein 1 (SPP1), also known as Osteopontin (OPN), is a multifunctional glycoprotein widely 
involved in biological processes such as cell adhesion, migration, signal transduction, and immune regulation. Studies have 
shown that SPP1 is highly expressed in various tumors and is closely associated with tumor invasion, metastasis, and poor 
prognosis. Additionally, SPP1 can help tumor cells evade immune surveillance by regulating the function of immune cells 
in the tumor microenvironment. This article reviews the research progress of SPP1 in tumors from three aspects: first, the 
molecular biological characteristics of SPP1; second, the clinical value of SPP1 as a prognostic marker in various tumors, 
analyzing the correlation between its expression levels and patient prognosis; and finally, the mechanisms of SPP1 in the 
tumor microenvironment. Through this review, we aim to provide a theoretical foundation for a deeper understanding of the 
role of SPP1 in tumor development and to offer new insights and directions for developing SPP1-based tumor diagnostic 
markers and targeted therapeutic strategies.
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1. Structure and function of SPP1
The SPP1 gene is located on human chromosome 4q13 and consists of 7 exons and 6 introns [1,2]. The encoded protein 
is a secreted glycoprotein with a molecular weight of approximately 44 kDa. The SPP1 protein contains multiple 
functional domains, including the Arg-Gly-Asp (RGD) sequence, calcium-binding domain, and integrin-binding 
domain [3]. The RGD sequence is a key region for SPP1 binding to integrin receptors, while the calcium-binding domain 
is involved in the mineralization of the extracellular matrix [4]. SPP1 binds to cell surface receptors (such as integrin 
αvβ1, αvβ3, αvβ5, α8β1, α5β1) [2], activating downstream PI3K/AKT, MAPK, and NF-κB signaling pathways, thereby 
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regulating cell proliferation, migration, invasion, and survival [5–8]. Post-translational modifications (PTMs) of SPP1, 
including phosphorylation, glycosylation, sulfation, and proteolytic processing, are pivotal mechanisms underlying its 
functional diversity and regulatory complexity. These modifications profoundly influence its biological activity and 
interactions with distinct receptors, enabling precise regulation of cellular adhesion, immune responses, and disease 
progression[9]. Additionally, SPP1 is involved in immune regulation by modulating the functions of macrophages, 
CD8+ T cells, and dendritic cells [10–13], influencing the immune status of the tumor microenvironment and the efficacy 
of immunotherapy.

2. SPP1 as a prognostic marker in various tumors
The CancerSeek test uses liquid biopsy to screen for up to eight solid tumors, with SPP1 being one of the eight protein 
markers [14]. Pan-cancer analysis indicates that SPP1 is highly expressed in various tumors, including breast cancer, 
liver cancer, lung cancer, gastric cancer, and colorectal cancer [15]. Its expression levels are correlated with tumor stage, 
invasiveness, and metastatic potential.

In lung adenocarcinoma, SPP1 regulates the downstream molecule COL11A1, promoting invasion and migration, 
and may be a marker for metastasis and prognosis [16]. In melanoma patient samples, SPP1 is highly expressed and 
enhances cell proliferation, migration, and invasion, making it a potential driver of melanoma. Overexpression of SPP1 
predicts poor prognosis in melanoma [17]. In liver cancer, a bioinformatics analysis found that SPP1 can activate 
oncogenic signaling pathways and promote epithelial-to-mesenchymal transition (EMT), thereby enhancing resistance 
to receptor tyrosine kinase inhibitors (TKIs) such as sorafenib and lenvatinib. Pre-treatment plasma SPP1 levels are a 
potential biomarker for predicting treatment response, with higher pre-treatment plasma SPP1 levels being an 
independent predictor of poorer progression-free survival (PFS) and overall survival (OS) in advanced HCC patients 
treated with TKIs [18].

SPP1 affects tumor prognosis through various mechanisms. It activates integrin-mediated signaling pathways, 
enhancing tumor cell migration and invasion [19,20]. SPP1 can also induce angiogenesis by upregulating the expression 
of angiogenic factors such as VEGF, promoting tumor vascularization and providing nutritional support for tumor 
growth and metastasis [21]. Additionally, SPP1 helps tumor cells evade immune surveillance by inhibiting anti-tumor 
immune responses, such as suppressing T cell activity and promoting M2 macrophage polarization [5,22].

3. Role of SPP1 in the tumor microenvironment
The tumor microenvironment is composed of the structural framework of tumor tissue, including stromal cells such as 
connective tissue cells, vascular components, and immune cells. These components play a crucial role in tumor 
metastasis and progression. Cancer-associated fibroblasts (CAFs) are important components of the tumor 
microenvironment and can secrete various cytokines and growth factors to promote tumor progression [23]. SPP1 
promotes tumor growth and survival by regulating tumor cell reprogramming. In prostate cancer, androgen inhibition 
activates TGF-β signaling, reprogramming inflammatory CAFs into SPP1+ myofibroblasts, which further leads to 
resistance to androgen deprivation therapy (ADT) through the SPP1-ERK paracrine mechanism [24]. Blocking SPP1 
derived from CAFs can resensitize prostate cancer cells to ADT. SPP1 binds to integrin receptors on CAFs, activating 
their proliferation and activation, thereby promoting tumor cell invasion and metastasis [25]. Additionally, SPP1 can 
induce CAFs to secrete more extracellular matrix (ECM) components, altering the physical properties of the tumor 
microenvironment [26].

Another immune cell closely related to SPP1 is tumor-associated macrophages (TAMs). Emerging evidence 
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underscores the pivotal role of TAMs in driving oncogenic processes, spanning tumor initiation, proliferation, 
immunosuppression, angiogenesis, and metastatic dissemination [27]. SPP1 maintains the M2 phenotype of 
macrophages, which have immunosuppressive functions that inhibit CD8+ T cell activity and promote tumor immune 
evasion [28]. TAMs secrete cytokines and growth factors that act on both malignant and endothelial cells, while 
simultaneously releasing proteolytic enzymes to facilitate ECM degradation, such as SPP1 stimulates IL-12 and inhibits 
IL-10 production at sites of inflammation in macrophages, with a strong proinflammatory effect [29]. Past research 
found that macrophages with high SPP1 expression show poor response to anti-PD-L1 therapy, with limited clinical 
benefits. This may be due to the significant concentration of SPP1+ macrophages in tumor tissue and their synergistic 
interaction with fibroblasts, promoting connective tissue proliferation in the tumor microenvironment and hindering 
the efficacy of immunotherapy [30].

SPP1 also plays a key role in cellular metabolic reprogramming. To meet the demands of rapid proliferation, 
tumor cells often undergo metabolic reprogramming to adapt to nutrient-deprived microenvironments. This 
reprogramming includes changes in glucose metabolism, glutamine metabolism, and lipid metabolism [31]. In the 
process of tumor metabolic reprogramming, SPP1 may support tumor cell growth and survival by influencing key 
metabolic pathways. For example, SPP1 may promote glycolysis in tumor cells by regulating key enzymes in the 
glucose metabolism pathway, such as pyruvate kinase M2, thereby supporting tumor cell survival under hypoxic and 
nutrient-poor conditions [32]. Additionally, SPP1 may promote the use of glutamine as an alternative energy source in 
the absence of glucose, maintaining cell proliferation and growth [33]. In summary, SPP1 promotes tumor growth and 
survival by regulating tumor cell metabolic reprogramming. This metabolic reprogramming not only helps tumor cells 
survive in unfavorable microenvironments but may also provide new targets and strategies for tumor treatment.

4. Conclusion and future perspectives
SPP1 as a multifunctional glycoprotein, has been widely demonstrated to play a crucial role in tumorigenesis and 
progression. Studies have shown that SPP1 participates in tumor progression through multiple molecular mechanisms. 
Firstly, it activates key signaling pathways such as PI3K/AKT and MAPK, promoting tumor cell proliferation and 
survival. Secondly, SPP1 enhances tumor cell migration and invasion by interacting with molecules such as integrin 
receptors and CD44. Furthermore, SPP1 modulates the tumor microenvironment by promoting angiogenesis, matrix 
remodeling, and immune suppression, thereby creating favorable conditions for tumor progression. Clinical research 
data further confirm that high expression of SPP1 is significantly associated with poor prognosis in various 
malignancies, including breast cancer, liver cancer, and lung cancer, suggesting its potential as an important prognostic 
biomarker and therapeutic target.

However, there are still many unknowns regarding the specific mechanisms of SPP1 in tumors. Firstly, the 
regulatory mechanisms of SPP1 expression in different types of tumors have not been fully elucidated. Secondly, the 
interaction network between SPP1 and other components of the tumor microenvironment, such as immune cells and 
fibroblasts, requires further exploration. Additionally, the mechanisms by which SPP1 mediates tumor immune evasion 
remain to be thoroughly investigated. Addressing these scientific questions will contribute to a more comprehensive 
understanding of the role of SPP1 in tumor progression. Given the significant role of SPP1 in tumors, the development 
of targeted therapeutic strategies against SPP1 holds broad clinical application prospects.

In conclusion, as a novel therapeutic target in oncology, in-depth research on SPP1 will not only help elucidate 
the molecular mechanisms of tumorigenesis and progression but also provide new strategies for precise diagnosis and 
treatment of tumors. With a deeper understanding of the mechanisms of SPP1 and the development of targeted drugs, 
it is believed that SPP1 will play an important role in future cancer diagnosis and treatment, offering new hope for 
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improving the prognosis of cancer patients.
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