Development and Application of Evolution and Big Data-Oriented Bioinformatics in Natural Product Research
Keywords:
Natural products, Evolution, Gene mining, Biosynthetic modification, BioinformaticsAbstract
Billions of years of evolution in nature have nurtured abundant natural product resources, providing a vast molecular treasure trove for drug discovery and development. Evolution-oriented bioinformatics methods are playing an increasingly important role in the study of microbial natural products. The rapid growth of microbial genomic data presents new opportunities for big data analysis and evolutionary analysis of biosynthetic gene clusters. This not only allows us to have a clearer understanding of the panoramic view of natural products but also reveals the evolutionary patterns of natural products, utilizes evolutionary analysis methods and big data resources to discover novel drug lead natural products, understands biosynthetic enzymes, and even designs and modifies biosynthetic systems to create non-natural molecules. This article reviews recent advances in the application of evolution and big data-oriented bioinformatics to natural product research. It emphasizes the application of evolution and big data in the functional prediction of biosynthetic enzymes, evolutionary mechanisms, gene mining, and biosynthetic modification. Finally, it analyzes the current challenges and provides a view on future development trends.
References
Chevrette MG, Gavrilidou A, Mantri S, et al., 2021, The Confluence of Big Data and Evolutionary Genome Mining for the Discovery of Natural Products. Natural Product Reports, 38(11): 2024–2040.
Chevrette MG, Gutierrez-Garcia K, Selem-Mojica N, et al., 2020, Evolutionary Dynamics of Natural Product Biosynthesis in Bacteria. Natural Product Reports, 37(4): 566–599.
Jensen PR, 2016, Natural Products and the Gene Cluster Revolution. Trends in Microbiology, 24(12): 968–977.
Gavriilidou A, Kautsar SA, Zaburannyi N, et al., 2022, Compendium of Specialized Metabolite Biosynthetic Diversity Encoded in Bacterial Genomes. Nature Microbiology, 7: 726–735.
Chen SC, Zhang C, Zhang LH, 2022, Investigation of the Molecular Landscape of Bacterial Aromatic Polyketides by Global Analysis of Type II Polyketide Synthases. Angewandte Chemie-International Edition, 61(24): e202202286.
Adamek M, Alanjary M, Ziemert N, 2019, Applied Evolution: Phylogeny-Based Approaches in Natural Products Research. Natural Product Reports, 36(9): 1295–1312.
Pande S, Kost C, 2017, Bacterial Unculturability and the Formation of Intercellular Metabolic Networks. Trends in Microbiology, 25(5): 349–361.
Ziemert N, Alanjary M, Weber T, 2016, The Evolution of Genome Mining in Microbes - A Review. Natural Product Reports, 33(8): 988–1005.
Walker J M, 2022, Engineering Natural Products Biosynthesis. Humana Imprint, New York.
Yang Q, Cheng BT, Tang ZJ, et al., 2021, Applications and Prospects of Genome Mining in the Discovery of Natural Products. Synthetic Biology Journal, 2(5): 697–715.
Zerikly M, Challis GL, 2009, Strategies for the Discovery of New Natural Products by Genome Mining. ChemBioChem, 10(4): 625–633.
Scherlach K, Hertweck C, 2021, Mining and Unearthing Hidden Biosynthetic Potential. Nature Communications, 12(1): 3864.
Bauman KD, Butler KS, Moore BS, et al., 2021, Genome Mining Methods to Discover Bioactive Natural Products. Natural Product Reports, 38(11): 2100–2129.
Cruz-Morales P, Kopp JF, Martinez-Guerrero C, et al., 2016, Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes. Genome Biology and Evolution, 8(6): 1906–1916.
Kang HS, 2017, Phylogeny-Guided (Meta)Genome Mining Approach for the Targeted Discovery of New Microbial Natural Products. Journal of Industrial Microbiology and Biotechnology, 44(2): 285–293.
Alanjary M, Kronmiller B, Adamek M, et al., 2017, The Antibiotic Resistant Target Seeker (ARTS), an Exploration Engine for Antibiotic Cluster Prioritization and Novel Drug Target Discovery. Nucleic Acids Research, 45(W1): W42–W48.
Mungan MD, Alanjary M, Blin K, et al., 2020, ARTS 2.0: Feature Updates and Expansion of the Antibiotic Resistant Target Seeker for Comparative Genome Mining. Nucleic Acids Research, 48(W1): W546–W552.
Ziemert N, Podell S, Penn K, et al., 2012, The Natural Product Domain Seeker NaPDoS: A Phylogeny-Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity. PLoS One, 7(3): e34064.
Klau LJ, Podell S, Creamer KE, et al., 2022, The Natural Product Domain Seeker Version 2 (NaPDoS2) Webtool Relates Ketosynthase Phylogeny to Biosynthetic Function. Journal of Biological Chemistry, 298(10): 102480.
Selem-Mojica N, Aguilar C, Gutierrez-Garcia K, et al., 2019, EvoMining Reveals the Origin and Fate of Natural Product Biosynthetic Enzymes. Microbial Genomics, 5(12): e260.
Navarro-Munoz JC, Selem-Mojica N, Mullowney MW, et al., 2020, A Computational Framework to Explore Large-Scale Biosynthetic Diversity. Nature Chemical Biology, 16(1): 60–68.
Medema MH, Kottmann R, Yilmaz P, et al., 2015, Minimum Information about a Biosynthetic Gene Cluster. Nature Chemical Biology, 11(9): 625–631.
Kautsar SA, Blin K, Shaw S, et al., 2020, MIBiG 2.0: A Repository for Biosynthetic Gene Clusters of Known Function. Nucleic Acids Research, 48(D1): D454–D458.
Blin K, Shaw S, Kautsar SA, et al., 2021, The AntiSMASH Database Version 3: Increased Taxonomic Coverage and New Query Features for Modular Enzymes. Nucleic Acids Research, 49(D1): D639–D643.
Rawlings BJ, 2001, Type I Polyketide Biosynthesis in Bacteria (Part A-Erythromycin Biosynthesis). Natural Product Reports, 18(2): 190–227.
Hertweck C, Luzhetskyy A, Rebets Y, et al., 2007, Type II Polyketide Synthases: Gaining a Deeper Insight into Enzymatic Teamwork. Natural Product Reports, 24(1): 162–190.
Abe I, Morita H, 2010, Structure and Function of the Chalcone Synthase Superfamily of Plant Type III Polyketide Synthases. Natural Product Reports, 27(6): 809–838.
Yu D, Xu F, Zeng J, et al., 2012, Type III Polyketide Synthases in Natural Product Biosynthesis. IUBMB Life, 64(4): 285–295.
Nivina A, Yuet KP, Hsu J, et al., 2019, Evolution and Diversity of Assembly-Line Polyketide Synthases. Chemical Reviews, 119(24): 12524–12547.
Jenke-Kodama H, Dittmann E, 2009, Evolution of Metabolic Diversity: Insights from Microbial Polyketide Synthases. Phytochemistry, 70(15–16): 1858–1866.
Nivina A, Herrera PS, Fraser HB, et al., 2021, GRINS: Genetic Elements That Recode Assembly-Line Polyketide Synthases and Accelerate Their Diversification. Proceedings of the National Academy of Sciences of the United States of America, 118(26): e260.
Jenke-Kodama H, Sandmann A, Muller R, et al., 2005, Evolutionary Implications of Bacterial Polyketide Synthases. Molecular Biology and Evolution, 22(10): 2027–2039.
Nguyen T, Ishida K, Jenke-Kodama H, et al., 2008, Exploiting the Mosaic Structure of Trans-Acyltransferase Polyketide Synthases for Natural Product Discovery and Pathway Dissection. Nature Biotechnology, 26(2): 225–233.
Lopez JV, 2004, Naturally Mosaic Operons for Secondary Metabolite Biosynthesis: Variability and Putative Horizontal Transfer of Discrete Catalytic Domains of the Epothilone Polyketide Synthase Locus. Molecular Genetics and Genomics, 270(5): 420–431.
Zhang L, Hashimoto T, Qin B, et al., 2017, Characterization of Giant Modular PKSs Provides Insight into Genetic Mechanism for Structural Diversification of Aminopolyol Polyketides. Angewandte Chemie - International Edition, 56(7): 1740–1745.
Keatinge-Clay AT, 2017, Polyketide Synthase Modules Redefined. Angewandte Chemie - International Edition, 56(17): 4658–4660.
Vander WDA, Keatinge-Clay AT, 2018, The Modules of Trans-Acyltransferase Assembly Lines Redefined with a Central Acyl Carrier Protein. Proteins, 86(6): 664–675.
Caffrey P, 2003, Conserved Amino Acid Residues Correlating with Ketoreductase Stereospecificity in Modular Polyketide Synthases. Chembiochem, 4(7): 654–657.
Drew AVW, Adrian TKC, 2018, The Modules of Trans-Acyltransferase Assembly Lines Redefined with a Central Acyl Carrier Protein. Proteins, 86(6): 664–675.
Medema MH, Cimermancic P, Sali A, et al., 2014, A Systematic Computational Analysis of Biosynthetic Gene Cluster Evolution: Lessons for Engineering Biosynthesis. PLoS Computational Biology, 10(12): e1004016.
Ridley CP, Lee HY, Khosla C, 2008, Evolution of Polyketide Synthases in Bacteria. Proceedings of the National Academy of Sciences of the United States of America, 15(12): 4595–4600.
Hillenmeyer ME, Vandova GA, Berlew EE, et al., 2015, Evolution of Chemical Diversity by Coordinated Gene Swaps in Type II Polyketide Gene Clusters. Proceedings of the National Academy of Sciences of the United States of America, 112(45): 13952–13957.
Gabaldon T, Koonin EV, 2013, Functional and Evolutionary Implications of Gene Orthology. Nature Reviews Genetics, 14(5): 360–366.
Fritzsche K, Ishida K, Hertweck C, 2008, Orchestration of Discoid Polyketide Cyclization in the Resistomycin Pathway. Journal of the American Chemical Society, 130: 8307–8316.
Fraley AE, Dieterich CL, Mabesoone MFJ, et al., 2022, Structure of a Promiscuous Thioesterase Domain Responsible for Branching Acylation in Polyketide Biosynthesis. Angewandte Chemie - International Edition, 2022: e202206385.
Schwecke T, Aparicio JF, Molnár I, et al., 1995, The Biosynthetic Gene Cluster for the Polyketide Immunosuppressant Rapamycin. Proceedings of the National Academy of Sciences of the United States of America, 92(17): 7839–7843.
Haydock SF, Aparicio JF, Molnár I, et al., 1995, Divergent Sequence Motifs Correlated with the Substrate Specificity of (Methyl) Malonyl-CoA: Acyl Carrier Protein Transacylase Domains in Modular Polyketide Synthases. FEBS Letters, 374(2): 246–248.
Aparicio JF, Molnár I, Schwecke T, et al., 1996, Organization of the Biosynthetic Gene Cluster for Rapamycin in Streptomyces hygroscopicus: Analysis of the Enzymatic Domains in the Modular Polyketide Synthase. Gene, 169(1): 9–16.
Kakavas SJ, Katz L, Stassi D, 1997, Identification and Characterization of the Niddamycin Polyketide Synthase Genes from Streptomyces caelestis. Journal of Bacteriology, 179(23): 7515–7522.
Kang HS, Brady SF, 2014, Mining Soil Metagenomes to Better Understand the Evolution of Natural Product Structural Diversity: Pentangular Polyphenols as a Case Study. Journal of the American Chemical Society, 136(52): 18111–18119.
Kang HS, Brady SF, 2013, Arimetamycin A: Improving Clinically Relevant Families of Natural Products Through Sequence-Guided Screening of Soil Metagenomes. Angewandte Chemie - International Edition, 52(42): 11063–11067.
Li LY, Hu YL, Sun JL, et al., 2022, Resistance and Phylogeny-Guided Discovery Reveals Structural Novelty of Tetracycline Antibiotics. Chemical Science, 13: 12892–12898.
Ziemert N, Jensen PR, 2012, Phylogenetic Approaches to Natural Product Structure Prediction. Methods in Enzymology, 517: 161–182.
Ueoka R, Uria AR, Reiter S, et al., 2015, Metabolic and Evolutionary Origin of Actin-Binding Polyketides from Diverse Organisms. Nature Chemical Biology, 11(9): 705–712.
Helfrich EJN, Ueoka R, Dolev A, et al., 2019, Automated Structure Prediction of Trans-Acyltransferase Polyketide Synthase Products. Nature Chemical Biology, 15(8): 813–821.
Helfrich EJN, Ueoka R, Chevrette MG, et al., 2021, Evolution of Combinatorial Diversity in Trans-Acyltransferase Polyketide Synthase Assembly Lines Across Bacteria. Nature Communications, 12(1): 1422.
Guo J, Ran HM, Zeng J, et al., 2016, Tafuketide, a Phylogeny-Guided Discovery of a New Polyketide from Talaromyces funiculosus Salicorn 58. Applied Microbiology and Biotechnology, 100: 5323–5338.
Shen B, Hindra, Yan X, et al., 2015, Enediynes: Exploration of Microbial Genomics to Discover New Anticancer Drug Leads. Bioorganic and Medicinal Chemistry Letters, 25(1): 9–15.
Yan X, Ge H, Huang T, et al., 2016, Strain Prioritization and Genome Mining for Enediyne Natural Products. mBio, 7(6): 12.
Weissman KJ, 2016, Genetic Engineering of Modular PKSs: From Combinatorial Biosynthesis to Synthetic Biology. Natural Product Reports, 33(2): 203–230.
Cao CK, Li JL, Zhang KC, 2021, Research Progress in Synthetic Organic Alcohols and Organic Acids Through Artificial Metabolic Pathways. Synthetic Biology, 2(6): 902–919.
Booth TJ, Bozhuyuk KAJ, Liston JD, et al., 2022, Bifurcation Drives the Evolution of Assembly-Line Biosynthesis. Nature Communications, 13(1): 3498.
Hirsch M, Fitzgerald BJ, Keatinge-Clay AT, 2021, How Cis-Acyltransferase Assembly-Line Ketosynthases Gatekeep for Processed Polyketide Intermediates. ACS Chemical Biology, 16(11): 2515–2526.
Miyazawa T, Hirsch M, Zhang ZC, et al., 2020, An In Vitro Platform for Engineering and Harnessing Modular Polyketide Synthases. Nature Communications, 11(1): 80.
Miyazawa T, Fitzgerald BJ, Keatinge-Clay AT, 2021, Preparative Production of an Enantiomeric Pair by Engineered Polyketide Synthases. Chemical Communications, 57(70): 8762–8765.
Peng H, Ishida K, Sugimoto Y, et al., 2019, Emulating Evolutionary Processes to Morph Aureothin-Type Modular Polyketide Synthases and Associated Oxygenases. Nature Communications, 10(1): 3918.
Yuzawa S, Deng K, Wang G, et al., 2017, Comprehensive In Vitro Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production. ACS Synthetic Biology, 6(1): 139–147.
Satoshi Y, Mona M, Renee J, et al., 2018, Short-Chain Ketone Production by Engineered Polyketide Synthases in Streptomyces albus. Nature Communications, 9(1): 4569.
Zargar A, Valencia L, Wang J, et al., 2020, A Bimodular PKS Platform That Expands the Biological Design Space. Metabolic Engineering, 61: 389–396.
Eng CH, Yuzawa S, Wang G, et al., 2016, Alteration of Polyketide Stereochemistry From Anti to Syn by a Ketoreductase Domain Exchange in a Type I Modular Polyketide Synthase Subunit. Biochemistry, 55(12): 1677–1680.
Hagen A, Poust S, De Rond T, et al., 2016, Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid. ACS Synthetic Biology, 5(1): 21–27.
Zargar A, Lal R, Valencia L, et al., 2020, Chemoinformatic-Guided Engineering of Polyketide Synthases. Journal of the American Chemical Society, 142(22): 9896–9901.
Musiol-Kroll EM, Wohlleben W, 2018, Acyltransferases as Tools for Polyketide Synthase Engineering. Antibiotics-Basel, 7(3): 62.
Kwan DH, Tosin M, Schlager N, et al., 2011, Insights Into the Stereospecificity of Ketoreduction in a Modular Polyketide Synthase. Organic & Biomolecular Chemistry, 9(7): 2053–2056.
Bagde SR, Mathews II, Fromme JC, et al., 2021, Modular Polyketide Synthase Contains Two Reaction Chambers That Operate Asynchronously. Science, 374(6568): 723.
Cogan DP, Zhang KM, Li XY, et al., 2021, Mapping the Catalytic Conformations of an Assembly-Line Polyketide Synthase Module. Science, 374(6568): 729–734.
Herbst DA, Jakob RP, Zähringer F, et al., 2016, Mycocerosic Acid Synthase Exemplifies the Architecture of Reducing Polyketide Synthases. Nature, 531(7595): 533–537.
Zheng JT, Gay DC, Demeler B, et al., 2012, Divergence of Multimodular Polyketide Synthases Revealed by a Didomain Structure. Nature Chemical Biology, 8(7): 615–621.
Gay D, You YO, Keatinge-Clay A, et al., 2013, Structure and Stereospecificity of the Dehydratase Domain from the Terminal Module of the Rifamycin Polyketide Synthase. Biochemistry, 52(49): 8916–8928.
Dutta S, Whicher JR, Hansen DA, et al., 2014, Structure of a Modular Polyketide Synthase. Nature, 510(7506): 512–517.
Whicher JR, Dutta S, Hansen DA, et al., 2014, Structural Rearrangements of a Polyketide Synthase Module During Its Catalytic Cycle. Nature, 510(7506): 560–564.
Felnagle EA, Jackson EE, Chan YA, et al., 2008, Nonribosomal Peptide Synthetases Involved in the Production of Medically Relevant Natural Products. Molecular Pharmacology, 5(2): 191–211.
Sieber SA, Marahiel MA, 2005, Molecular Mechanisms Underlying Nonribosomal Peptide Synthesis: Approaches to New Antibiotics. Chemical Reviews, 105(2): 715–738.
Süssmuth RD, Mainz A, 2017, Nonribosomal Peptide Synthesis: Principles and Prospects. Angewandte Chemie-International Edition, 56(14): 3770–3821.
Jaremko MJ, Davis TD, Corpuz JC, et al., 2020, Type II Nonribosomal Peptide Synthetase Proteins: Structure, Mechanism, and Protein-Protein Interactions. Natural Product Reports, 37(3): 355–379.
Calcott MJ, Owen JG, Ackerley DF, 2020, Efficient Rational Modification of Non-Ribosomal Peptides by Adenylation Domain Substitution. Nature Communications, 11(1): 4554.
Baunach M, Chowdhury S, Stallforth P, et al., 2021, The Landscape of Recombination Events That Create Nonribosomal Peptide Diversity. Molecular Biology and Evolution, 38(5): 2116–2130.
Rausch C, Hoof I, Weber T, et al., 2007, Phylogenetic Analysis of Condensation Domains in NRPS Sheds Light on Their Functional Evolution. BMC Ecology and Evolution, 7: 78.
Wheadon MJ, Townsend CA, 2021, Evolutionary and Functional Analysis of an NRPS Condensation Domain Integrates Beta-Lactam, -Amino Acid, and Dehydroamino Acid Synthesis. Proceedings of the National Academy of Sciences of the United States of America, 118(17): e2026017118.
Stachelhaus T, Mohamed A, Marahiel MA, 1999, The Specificity-Conferring Code of Adenylation Domains in Nonribosomal Peptide Synthetases. Chemistry & Biology, 6: 493–505.
Röttig M, Medema MH, Blin K, et al., 2011, NRPSpredictor2 - A Web Server for Predicting NRPS Adenylation Domain Specificity. Nucleic Acids Research, 39: W362–W367.
Chevrette MG, Aicheler F, Kohlbacher O, et al., 2017, SANDPUMA: Ensemble Predictions of Nonribosomal Peptide Chemistry Reveal Biosynthetic Diversity Across Actinobacteria. Bioinformatics, 33(20): 3202–3210.
Ziemert N, Lechner A, Wietz M, et al., 2014, Diversity and Evolution of Secondary Metabolism in the Marine Actinomycete Genus Salinispora. Proceedings of the National Academy of Sciences of the United States of America, 111(12): 1130–1139.
Patteson J B, Fortinez C M, Putz A T, et al., 2022, Structure and Function of a Dehydrating Condensation Domain in Nonribosomal Peptide Biosynthesis. Journal of the American Chemical Society, 144(31): 14057–14070.
Hover BM, Kim SH, Katz M, et al., 2018, Culture-Independent Discovery of the Malacidins as Calcium-Dependent Antibiotics With Activity Against Multidrug-Resistant Gram-Positive Pathogens. Nature Microbiology, 3(4): 415–422.
Culp EJ, Waglechner N, Wang W, et al., 2020, Evolution-Guided Discovery of Antibiotics That Inhibit Peptidoglycan Remodeling. Nature, 578(7796): 582–587.
Xu M, Wang WL, Waglechner N, et al., 2022, Phylogeny-Informed Synthetic Biology Reveals Unprecedented Structural Novelty in Type V Glycopeptide Antibiotics. ACS Central Science, 8(5): 615–626.
Wang ZQ, Koirala B, Hernandez Y, et al., 2022, Bioinformatic Prospecting and Synthesis of a Bifunctional Lipopeptide Antibiotic That Evades Resistance. Science, 376: 991–996.
Calcott MJ, Owen JG, Lamont IL, et al., 2014, Biosynthesis of Novel Pyoverdines by Domain Substitution in a Nonribosomal Peptide Synthetase of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 80(18): 5723–5731.
Thirlway J, Lewis R, Nunns L, et al., 2012, Introduction of a Non-Natural Amino Acid Into a Nonribosomal Peptide Antibiotic by Modification of Adenylation Domain Specificity. Angewandte Chemie-International Edition, 51(29): 7181–7184.
Kries H, Wachtel R, Pabst A, et al., 2014, Reprogramming Nonribosomal Peptide Synthetases for “Clickable” Amino Acids. Angewandte Chemie-International Edition, 53(38): 10105–10108.
Kien T, Nguyen DR, Gu JQ, et al., 2006, Combinatorial Biosynthesis of Novel Antibiotics Related to Daptomycin. Proceedings of the National Academy of Sciences of the United States of America, 103(46): 17462–17467.
Crusemann M, Kohlhaas C, Piel J., 2013, Evolution-Guided Engineering of Nonribosomal Peptide Synthetase Adenylation Domains. Chemical Science, 4(3): 1041–1045.
Kries H, Niquille DL, Hilvert D., 2015, A Subdomain Swap Strategy for Reengineering Nonribosomal Peptides. Chemistry & Biology, 22(5): 640–648.
Bozhüyük KAJ, Linck A, Tietze A, et al., 2019, Modification and De Novo Design of Non-Ribosomal Peptide Synthetases (NRPS) Using Specific Assembly Points Within Condensation Domains. Nature Chemistry, 11: 653–661.
Bozhüyük KAJ, Watzel J, Abbood N, et al., 2021, Synthetic Zippers as an Enabling Tool for Engineering of Non-Ribosomal Peptide Synthetases. Angewandte Chemie-International Edition, 60(32): 17531–17538.
Kranz J, Wenski SL, Dichter AA, et al., 2021, Influence of Condensation Domains on Activity and Specificity of Adenylation Domains. bioRxiv, 2021: 1–45.
Bozhüyük K A J, Fleischhacker F, Linck A, et al., 2018, De Novo Design and Engineering of Non-Ribosomal Peptide Synthetases. Nature Chemistry, 10(3): 275–281.
Minami A, Ugai T, Ozaki T, et al., 2020, Predicting the Chemical Space of Fungal Polyketides by Phylogeny-Based Bioinformatics Analysis of Polyketide Synthase-Nonribosomal Peptide Synthetase and Its Modification Enzymes. Scientific Reports, 10: 13556.
Awakawa T, Fujioka T, Zhang L, et al., 2018, Reprogramming of the Antimycin NRPS-PKS Assembly Lines Inspired by Gene Evolution. Nature Communications, 9(1): 3534.
Santos-Aberturas J, Chandra G, Frattaruolo L, et al., 2019, Uncovering the Unexplored Diversity of Thioamidated Ribosomal Peptides in Actinobacteria Using the RiPPER Genome Mining Tool. Nucleic Acids Research, 47(9): 4624–4637.
Lü JW, Deng ZX, Zhang Q, et al., 2022, Identification of RiPPs Precursor Peptides and Cleavage Sites Based on Deep Learning. Synthetic Biology, 2022: 1–14.
Medema MH, Takano E, Breitling R., 2013, Detecting Sequence Homology at the Gene Cluster Level With MultiGeneBlast. Molecular Biology and Evolution, 30: 1218–1223.
Tietz JI, Schwalen CJ, Patel PS, et al., 2017, A New Genome-Mining Tool Redefines the Lasso Peptide Biosynthetic Landscape. Nature Chemical Biology, 13(5): 470–475.
Merwin NJ, Mousa WK, Dejong CA, et al., 2020, DeepRiPP Integrates Multiomics Data to Automate Discovery of Novel Ribosomally Synthesized Natural Products. Proceedings of the National Academy of Sciences of the United States of America, 117(1): 371–380.
Martin-Sanchez L, Singh KS, Avalos M, et al., 2019, Phylogenomic Analyses and Distribution of Terpene Synthases Among Streptomyces. Beilstein Journal of Organic Chemistry, 15: 1181–1193.
Jia Q, Chen X, Köllner TG, et al., 2019, Terpene Synthase Genes Originated From Bacteria Through Horizontal Gene Transfer Contribute to Terpenoid Diversity in Fungi. Scientific Reports, 9(1): 9223.
Avalos M, Garbeva P, Vader L, et al., 2022, Biosynthesis, Evolution, and Ecology of Microbial Terpenoids. Natural Product Reports, 39(2): 249–272.
Yang YL, Zhang SS, Ma K, et al., 2017, Discovery and Characterization of a New Family of Diterpene Cyclases in Bacteria and Fungi. Angewandte Chemie-International Edition, 56(17): 4749–4752.
Chen R, Jia QD, Mu X, et al., 2021, Systematic Mining of Fungal Chimeric Terpene Synthases Using an Efficient Precursor-Providing Yeast Chassis. Proceedings of the National Academy of Sciences of the United States of America, 118(29): e2023247118.
Tao H, Lauterbach L, Bian GK, et al., 2022, Discovery of Non-Squalene Triterpenes. Nature, 606: 414–420.
Jiang C, Kim SY, Suh DY., 2008, Divergent Evolution of the Thiolase Superfamily and Chalcone Synthase Family. Molecular Phylogenetics and Evolution, 49(3): 691–701.
Tan Z, Clomburg JM, Cheong S, et al., 2020, A Polyketoacyl-CoA Thiolase-Dependent Pathway for the Synthesis of Polyketide Backbones. Nature Catalysis, 3(7): 593–603.
Shanklin J, Guy JE, Mishra G, et al., 2009, Desaturases: Emerging Models for Understanding Functional Diversification of Diiron-Containing Enzymes. Journal of Biological Chemistry, 284(28): 18559–18563.
Zhu X, Liu J, Zhang W, 2015, De novo Biosynthesis of Terminal Alkyne-Labeled Natural Products. Nature Chemical Biology, 11(2): 115–120.
Zhu X, Su M, Manickam K, et al., 2015, Bacterial Genome Mining of Enzymatic Tools for Alkyne Biosynthesis. ACS Chemical Biology, 10(12): 2785–2793.
Chang FY, Brady SF, 2013, Discovery of Indolotryptoline Antiproliferative Agents by Homology-Guided Metagenomic Screening. Proceedings of the National Academy of Sciences of the United States of America, 110(7): 2478–2483.
Chang FY, Ternei MA, Calle PY, et al., 2015, Targeted Metagenomics: Finding Rare Tryptophan Dimer Natural Products in the Environment. Journal of the American Chemical Society, 137(18): 6044–6052.
Cimermancic P, Medema MH, Claesen J, et al., 2014, Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters. Cell, 158(2): 412–421.
O’Neill EC, Schorn M, Larson CB, et al., 2019, Targeted Antibiotic Discovery through Biosynthesis-Associated Resistance Determinants: Target-Directed Genome Mining. Critical Reviews in Microbiology, 45(3): 255–277.
Yan Y, Liu N, Tang Y, 2020, Recent Developments in Self-Resistance Gene-Directed Natural Product Discovery. Natural Product Reports, 37(7): 879–892.
Bernhardsgrutter I, Schell K, Peter DM, et al., 2019, Awakening the Sleeping Carboxylase Function of Enzymes: Engineering the Natural CO2-Binding Potential of Reductases. Journal of the American Chemical Society, 141(25): 9778–9782.
Sikosek T, 2019, Computational Methods in Protein Evolution. Methods in Molecular Biology, Humana Press, 2019: 1064–3745.
Harms MJ, Thornton JW, 2010, Analyzing Protein Structure and Function Using Ancestral Gene Reconstruction. Current Opinion in Structural Biology, 20(3): 360–366.
Cech NB, Medema MH, Clardy J, 2021, Benefiting from Big Data in Natural Products: Importance of Preserving Foundational Skills and Prioritizing Data Quality. Natural Product Reports, 38(11): 1947–1953.
Jeon J, Kang S, Kim HU, 2021, Predicting Biochemical and Physiological Effects of Natural Products from Molecular Structures Using Machine Learning. Natural Product Reports, 38(11): 1954–1966.