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Abstract: Aiming at the difference of different networks in the penetration problem, the paper starts from the precision, time and 
so on. Comparison of deep neural networks (DNN), Decision Trees, Ran Dom Forests, XGBoost, and Support vector machine 
(SVM), shows that different networks are different in predicting the ballistic limit of ball penetration. The test results show that 
the predictive value of the decision tree is 0.01 higher than that of the depth neural network (DNN), but the use time is much 
longer than that of DNN. The predictions were 0.05 higher when compared with a deep neural network (DNN) using Random 
Forests, and the predictions were not evenly distributed but the usage time was much lower. When comparing SVM with DNN, 
the predicted value is 0.0.9 higher, but the Support vector machine time is much less, and the predicted value distribution is 
even and curvilinear. The predicted values were found to be 0.09 higher when compared with deep neural network (DNN) using 
XGBoost, but were much lower with the use of specimens (DNN) and the predicted values were unevenly distributed.
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1. Introduction
Since the dawn of the 21st century, technological advancements have accelerated at an unprecedented pace, with cutting-
edge innovations emerging in every field. In military domains, high-powered precision weapons continue to evolve, their 
devastating capabilities creating global deterrence and posing significant threats worldwide. The increasing frequency of 
terrorist attacks has driven heightened security measures among nations. During combat operations, missiles launched by 
attackers or fragments from military equipment like tanks, fighter jets, armored vehicles, and drones—when destroyed 
through explosions—can inflict severe damage on structures and personnel. These fragmented projectiles, known as 
shrapnel, are the primary destructive components of warheads. They effectively target individuals, vehicles, light armor, 
and other targets[1].

Current approaches to address fragment penetration issues include theoretical analysis, experimental studies, and 
numerical simulations. Theoretical methods require significant simplification of scenarios before complex iterative 
calculations, which are time-consuming and cost-prohibitive due to computational limitations. Experimental solutions 
demand developing specific test protocols and preparing specimens, further prolonging computation cycles. Numerical 

May 26, 2025



 2025 Volume 3, Issue 4

-276-

methods demand advanced technical expertise, often requiring the deliberate study of unfamiliar algorithms or formulas. 
While these approaches have resolved numerous problems, their inherent limitations in model completeness and evaluation 
criteria hinder practical implementation[2]. Therefore, there is an urgent need for rapid and accurate prediction methods for 
fragment penetration targets.

With technological advancements, machine learning has achieved remarkable results across multiple fields [3-5], 
particularly excelling in solving complex nonlinear penetration problems. Recent studies have applied this technology to 
predict projectile penetration through various targets: Ryan et al. [6-8] predicted metal target plate failure patterns; Zhang 
Shuai[9] and Wang Shuo[10] distinguished between metal and concrete target plate damage effects; Li Jiangguang [11] utilized 
support vector machines and neural networks to forecast penetration depth in plain concrete; Yang Jiang et al. [12] enhanced 
prediction accuracy for plain concrete; Zhang Lei et al. [13] integrated data mining techniques; Fang Anqi et al.[14] developed 
recognition neural networks; Lei Yingjie et al. [15] combined genetic algorithms with machine learning—all demonstrating 
significant achievements. However, it remains crucial to clarify the distinct characteristics of different network 
architectures.

Shrapnel serves as the primary destructive element in explosive ordnance, capable of inflicting damage on multiple 
targets[16]. The ballistic limit velocity of shrapnel is a characteristic that describes its destructive capability. Low-carbon 
steel, widely used as a construction material worldwide, has also been the subject of continuous research by scientists. 
Golsdmith et al.[17] obtained deceleration patterns of steel balls penetrating steel plates through ballistic gun tests. Tan 
Duowang et al.[18] experimentally determined the penetration capability of 6-8mm diameter tungsten-type shrapnel on 
Q235 steel plates. Xu Yuxin[19] and colleagues conducted mechanistic studies on the penetration of Q235 steel plates by 
tungsten alloy spherical shrapnel, obtaining relevant shrapnel ballistic limit velocities. To accurately analyze differences in 
machine learning approaches when addressing penetration problems, this paper takes the ballistic limit velocity calculation 
model for tungsten alloy spherical shrapnel penetrating low-carbon steel collected and studied by Liu Tielai et al.[20] as the 
research object. We employ various machine learning networks including Decision Trees, Random Forests, XGBoost, and 
Support Vector Machines (SVM), along with deep neural networks (DNN) to predict ballistic limits and analyze results, 
thereby revealing the functional characteristics of different network architectures.

2. Establishment of experimental and computational models
2.1. Establishment of penetration calculation model
The formula model in this paper is derived from the data of the ballistic limit velocity calculation model for tungsten alloy 
spherical fragment penetration into low carbon steel by Liu Tielei [20] et al. According to the collation and calculation of the 
relevant formula model by Liu Tielei et al., the final ballistic limit velocity calculation model is as follows:

Where : is the plastic wave velocity of the target plate material; is the elongation of the 
target plate material-is the fitting coefficient; -is the fitting index. Is the tensile ultimate strength, and is the yield strength. 
The coefficients in the above formula can be obtained based on experiments.
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2.2. Experimental design
In order to obtain the experimental data required for the experiment, Liu Tiele and others carried out the penetration test of 
low carbon steel plate with broken pieces. The experimental design is shown in Figure a and Figure b below:

　　　　　　　　　　　　(a) Test schematic diagram　　　　　　　　　　　　　　　　　(b) Test site

In the experiment, 12.7 mm ballistic gun was used for acceleration, and the fragments were placed in the ammunition 
holder. After the fragments were fired out of the barrel under force, the distribution was shown in Figure 1. The velocity 
before the target was measured to obtain the target velocity.

Figure 1. Fragmented projectile separation (velocity 287 m/s)

2.3. Penetration data collection
According to the experimental data of ballistic limit velocity in [20] obtained by Liu Tiele and others, the data Table 1 is as 
follows:

Table 1. Ballistic test results

Order 
number 

Broken sheet material
Breakage 

diameter/mm
Target plate 

material
Target plate 

thickness/mm
Ballistics maximum 

speed/(m)

1 93W, tungsten alloy 6 Q345E steel 4 507

2 93W, tungsten alloy 6 Q345E steel 8 819

3 93W, tungsten alloy 7 Q345E steel 4 476

4 93W, tungsten alloy 8 Q345E steel 5 441

5 93W, tungsten alloy 6 Q235 steel 3 377

6 93W, tungsten alloy 8 Q235 steel 3 320

7 93W, tungsten alloy 7 Q235 steel 6 545

8 93W, tungsten alloy 8 Q235 steel 6 510
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The thickness ratio distribution of the projectile limit velocity is shown in Figure 2.

Figure 2. Ballistic limit velocity distribution with respect to target thickness ratio

The fracture deformation threshold Table 2 is as follows

Table 2. Fracture deformation threshold

Target plate material
Broken sheet plastic deformation 

threshold velocity/(m)
Breakage erosion deformation 

threshold velocity/(m)
Speed of fragment breakage 

and fragmentation threshold / (m)

Q235 Steel 663 1192 1684

Q345E steel 661 1130 1684

Penetration test of tungsten balls on Q235 steel plates of different thicknesses

Table 3. Test data of ballistic limit velocity

Order 
number 

Broken sheet 
material

Breakage 
diameter/mm

Target plate 
material

Target plate 
thickness/mm

Ballistics maximum 
speed/(m)

 data sources 

1 93W, tungsten alloy 8.00 Q235 Steel 3.00 319.5 Table 2

2 93W, tungsten alloy 4.70 Q235 steel 2.00 340.0 Document [4]

3 93W, tungsten alloy 6.00 Q235 Steel 3.00 377.5 Table 2

4 93W, tungsten alloy 7.00 Q345E steel 4.00 476.0 Table 2

5 93W, tungsten alloy 8.00 Q345E steel 5.00 441.0 Table 2

6 93W, tungsten alloy 6.00 Q345E steel 4.00 507.0 Table 2

7 93W, tungsten alloy 8.00 Q235 Steel 6.00 509.5 Table 2

8 93W, tungsten alloy 7.20 Q235 steel 7.20 522.9 Document [5]

9 93W, tungsten alloy 6.00 Q235 steel 6.00 468.4 Document [6]

10 93W, tungsten alloy 6.00 Q235 steel 6.00 545.0  experiment 

11 93W, tungsten alloy 6.70 Q235 steel 6.70 498.3 Document [6]

12 93W, tungsten alloy 9.40 Q235 steel 9.40 586.4 Document [8]

13 93W, tungsten alloy 10.00 Q235 steel 10.00 604.4 Document [22]
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Table 3 (Continued)

Order 
number 

Broken sheet 
material

Breakage 
diameter/mm

Target plate 
material

Target plate 
thickness/mm

Ballistics maximum 
speed/(m)

 data sources 

14 93W, tungsten alloy 7.51 Q235 Steel 9.00 660.5 Document [6]

15 93W, tungsten alloy 4.75 Q235 steel 6.00 670.0 Document [4]

16 93W, tungsten alloy 4.75 Q235 steel 6.00 670.0 Document [5]

17 93W, tungsten alloy 4.70 Q235 steel 6.00 670.0 Document [4]

18 93W, tungsten alloy 7.50 Q235 steel 9.67 725.4 Document [6]

19 93W, tungsten alloy 6.00 Q345E steel 8.00 819.0  experiment 

20 93W, tungsten alloy 4.43 Q235 steel 6.00 738.0 Document [4]

21 93W, tungsten alloy 4.43 Q235 steel 9.64 736.0 Document [5]

22 93W, tungsten alloy 7.00 Q235 Steel 6.00 776.2 Document [6]

23 93W, tungsten alloy 4.35 Q235 steel 6.00 760.0 Document [4]

24 93W, tungsten alloy 4.35 Q235 steel 6.00 758.0 Document [5]

25 93W, tungsten alloy 4.22 Q235 steel 6.00 773.0 Document [4]

26 93W, tungsten alloy 4.22 Q235 steel 9.64 773.0 Document [5]

27 93W, tungsten alloy 7.00 Q235 steel 12.60 781.0 Document [23]

28 93W, tungsten alloy 8.51 Q235 steel 11.50 710.3 Document [6]

29 93W, tungsten alloy 7.51 Q235 steel 9.68 736.9 Document [6]

30 93W, tungsten alloy 6.00 Q235 steel 9.68 962.3 Document [6]

31 93W, tungsten alloy 6.00 Q235 steel 9.68 924.2 Document [6]

32 93W, tungsten alloy 7.50 Q235 steel 12.50 848.4 Document [6]

33 93W, tungsten alloy 4.75 Q235 steel 8.00 940.0 Document [5]

34 93W, tungsten alloy 4.70 Q235 steel 8.00 900.0 Document [4]

35 93W, tungsten alloy 7.52 Q235 Steel 13.10 880.4 Document [6]

36 93W, tungsten alloy 7.51 Q235 steel 14.20 984.6 Document [6]

37 93W, tungsten alloy 7.00 Q235 Steel 11.78 1100.0 Document [23]

38 93W, tungsten alloy 6.00 Q235 Steel 11.62 1216.6 Document [6]

39 93W, tungsten alloy 6.00 Q235 steel 11.72 1260.0 Document [6]

40 93W, tungsten alloy 7.50 Q235 steel 14.85 1272.8 Document [6]

41 93W, tungsten alloy 7.00 Q235 steel 14.81 1421.9 Document [6]

42 93W, tungsten alloy 7.50 Q235 Steel 15.90 1468.6 Document [6]

43 93W, tungsten alloy 4.70 Q235 Steel 10.00 1240.0 Document [4]

44 93W, tungsten alloy 7.00 Q235 steel 15.00 1412.3 Document [7]

45 93W, tungsten alloy 4.75 Q235 Steel 10.20 1320.0 Document [5]

46 93W, tungsten alloy 7.00 Q235 steel 14.81 1493.3 Document [23]

47 93W, tungsten alloy 7.00 Q235 steel 15.89 1534.0 Document [23]

48 93W, tungsten alloy 7.00 Q235 steel 15.89 1548.8 Document [6]
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Table 3 (Continued)

Order 
number 

Broken sheet 
material

Breakage 
diameter/mm

Target plate 
material

Target plate 
thickness/mm

Ballistics maximum 
speed/(m)

 data sources 

49 93W, tungsten alloy 7.50 Q235 steel 17.90 1610.9 Document [6]

50 93W, tungsten alloy 6.00 Q235 Steel 14.81 1765.1 Document [6]

51 93W, tungsten alloy 7.00 Q235 steel 17.90 1762.0 Document [23]

52 93W, tungsten alloy 7.00 Q235 Steel 17.90 1774.6 Document [6]

53 93W, tungsten alloy 7.50 Q235 steel 19.96 1775.4 Document [6]

54 93W, tungsten alloy 6.00 Q235 steel 18.00 1803.6 Document [6]

3. Selection and calculation of machine learning network model
3.1. Network model selection
In this paper, deep neural network (DNN) is used as the comparison object, and four commonly used machine learning 
models such as decision tree (Decision Trees), random forest (Random Forests), XGBoost and support vector machine 
(SVM) are used to predict ballistic limit.

3.1.1. Deep Neural Network (DNN)
A Deep Neural Network (DNN) is an artificial neural network with multiple hidden layers, belonging to the deep 
learning category. It is particularly effective for processing large-scale data and complex pattern recognition. Its core 
components include: an input layer that receives features, hidden layers (with hyperparameters including the number of 
layers and neurons) that process the data, and an output layer that generates results. The working principle involves three 
key processes: forward propagation (data passing through weighted connections and activation functions), backward 
propagation (using gradient descent to minimize losses), and optimization algorithms (such as stochastic gradient descent). 
Connections are established through weights (connection strengths adjusted during training) and activation functions (like 
ReLU that introduces nonlinearity). DNNs excel in automatic feature learning, strong representation capabilities, and wide 
applications such as image recognition.

3.1.2. Decision Tree
An intuitive model for classification and regression that partitions data through decision rules. It consists of root nodes 
(starting points, partitioning data), internal nodes (feature testing), and leaf nodes (prediction outcomes). Working principle: 
Features are selected using criteria like information gain, and data is recursively split until stopping conditions are met (e.g., 
maximum depth). For classification, the majority class at leaf nodes is selected; for regression, the mean or median is used. 
Advantages include ease of understanding, no need for feature scaling, and capability to handle nonlinear relationships.

3.1.3. random forest 
It integrates multiple decision trees to improve robustness and is suitable for classification and regression. It features the 
introduction of data randomness (training set with random sampling) and feature randomness (randomly selecting feature 
subsets for splitting). For classification, it uses majority voting, and for regression, it uses result averaging.

3.1.4. XGBoost
The optimization implementation based on the gradient boosting framework operates through iterative decision tree 
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construction to minimize losses, employs regularization (L1/L2) to prevent overfitting, utilizes efficient node splitting 
(a greedy approximation algorithm), implements pruning and parallel computing, with built-in cross-validation. Its 
advantages include high efficiency, flexibility, proficiency in handling high-dimensional/imbalance data, and automatic 
feature selection capabilities.

3.1.5. Support vector machine 
The core concept of hyperplane segmentation data is hyperplanes (segmentation data), support vectors (key points near 
decision boundaries), and intervals (the distance from hyperplanes to support vectors, maximized for optimization). Its 
advantages include high-dimensional effectiveness, excellent performance in small-sample nonlinear problems, and strong 
generalization capability.

3.2. Establishment of the procedure
Steps: Input features (bullet/plate density, diameter, etc.); input layer normalized processing; hidden layer contains 
64/128/256 neurons with ReLU activation; output layer is a full connection layer plus regression layer, and the predicted 
value of bullet penetration limit velocity is output.

3.3. Data augmentation 
Random transformations (such as speed adjustment) are used to increase the amount and diversity of data, aiming to 
improve generalization ability and reduce overfitting. It includes original data, enhancement modules (such as extreme 
speed transformation), enhanced data and model training.

3.4. Feature engineering 
It includes data cleaning (handling missing values and outliers), transformation (using normalization), extraction (feature 
selection/low-dimensional reduction), construction (interacting/aggregating features), and encoding (label coding). The 
tools are Scikit-learn, Pandas, etc.

3.5. Training process and network design
The model of tungsten ball penetrating steel plate was trained by DNN. The steps are as follows:

(1) Data preparation: Collect the data set containing input features and target values, preprocess (cleaning and 
normalization), and divide it into training/verification/testing sets according to 7:2:1;

(2) Model architecture: full connection layer, configuration of the number of layers and nodes, with ReLU as the 
activation function;

(3) Training parameters: The loss function uses the mean absolute error (MAD) and mean relative error (MRE), and 
selects the optimizer to adjust the weight;

(4) Evaluation and tuning: evaluate the validation set, adjust the hyperparameters, use regularization to prevent 
overfitting, and finally test and deploy the model.

4. Prediction results and analysis
4.1. Construction of ballistic limit prediction model
The collected data above are used to make a data set with projectile density, target plate density, projectile material 
stiffness, target plate material stiffness, ballistic limit velocity as input, training set and test set, RMSE (the difference 
between predicted value and real value) as output to establish a prediction model. The whole process is shown in Figure 3.
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Figure 3. Schematic diagram of prediction model

Take the training (DNN) model as an example: 70% of the extracted data set is used as the training set to train the 
DNN model, and the remaining 30% is used for comparing with the final prediction results and monitoring the error 
changes generated during the training process. Figure 4 shows the training process:

　

Figure 4. Schematic diagram of DNN model training

The whole process lasted 19min55s and had 1000 iterations, with 30,000 iterations. After 30,000 iterations, the error 
of DNN model tended to be stable and reached a smooth state. The output results are shown in Figure 5.

Figure 5. Schematic diagram of output results of DNN model
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As shown in the figure above, the difference between actual values and predicted values is approximately 0.006, with 
the predicted values forming an unevenly sloping distribution curve. The DNN network model is slightly more complex. 
Below, we will compare it with other network models such as Decision Trees, Random Forests, XGBoost, and Support 
Vector Machines (SVM).

Figure 6. Comparison between DNN and Decision Trees

The two datasets reveal that the decision tree model’s root mean square error (RMSE) is 0.01 higher than the DNN 
model’s output value, with its predicted values showing less uniform distribution compared to the DNN model. This 
indicates the decision tree model’s limitations: slightly imprecise results and uneven distribution patterns. However, the 
decision tree model offers distinct advantages: immediate output generation, significantly lower time consumption than 
DNN models, and exceptionally simple configuration capabilities.

Figure 7. DNN and Random Forest (Random Forests) model are used

The two datasets reveal that the Root Mean Square Error (RMSE) of the random forest model’s outputs is 0.07 
higher than that of the DNN model, with its predicted values showing uneven distribution and clustering predominantly 
in the lower-left quadrant. This indicates the random forest model’s limitations: slightly lower accuracy and uneven data 
distribution. However, the key advantages include immediate output generation, significantly reduced computation time 
compared to DNN models, and easy model modification.

Figure 8. Comparison between DNN and XGBoos model
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The two datasets reveal that the Root Mean Square Error (RMSE) of the random forest model’s output is 0.9% higher 
than that of the DNN model. Moreover, while the DNN model exhibits a more uniform distribution of predicted values 
with most clustered in the lower-left quadrant, the random forest model displays a chaotic distribution pattern across its 
remaining predictions. This highlights the XGBoost model’s limitations: significant discrepancies between actual and 
predicted values coupled with uneven and inaccurate distribution patterns. However, the XGBoost model offers distinct 
advantages: it provides immediate prediction outputs, significantly reduces computation time compared to DNN models, 
and features relatively straightforward parameter tuning capabilities.

Figure 9. Comparison between DNN and support vector machine (SVM) model

From the two datasets, we observe that the root mean square error (RMSE) of the random forest model’s output 
is 0.9% higher than that of the support vector machine (SVM) model. However, the prediction distribution of the SVM 
model shows greater uniformity and concentration along the curve compared to the DNN model, indicating significantly 
lower accuracy. The SVM model demonstrates a more linear and evenly distributed prediction pattern. Additionally, the 
SVM model provides immediate output results during computation, requiring substantially less time than the DNN model. 
Furthermore, the SVM model’s relatively simple editing process represents one of its key advantages.

In summary, the advantages and disadvantages of each network model in analyzing tungsten ball penetration into 
target plate are shown in Table 4 as follows:

Table 4. Test data of ballistic limit velocity

Grid type  merit  shortcoming 

 deep neural network 
（DNN）

Excellent performance and high 
precision

It takes a long time; it is slightly complicated to write

Decision Trees
Easy to interpret; high accuracy, simple 

to write; fast time
The prediction value distribution is not accurate, and the accuracy is high 

but not as high as DNN

Random Forests Easy to write; short time The prediction value is not evenly distributed and the accuracy is poor

XGBoost Efficient and fast
The prediction value distribution is not accurate, and the accuracy is high 

but not as high as DNN

 support vector 
machine （SVM）

Fast speed, easy to write; the 
distribution of predicted values is linear

Low accuracy

4. Conclusion
Models of different grid types each have their own advantages and disadvantages: Deep neural networks (DNNS) have 
excellent performance and high accuracy, but they take a long time and are slightly more complex to write. Decision trees 
are easy to interpret, simple to write, fast in time, and have relatively high accuracy but are not as good as DNNS. At the 
same time, they have the problem of inaccurate distribution of predicted values. Random forests are easy to write and take 
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less time, but they have the drawbacks of uneven distribution of predicted values and poor accuracy. XGBoost is highly 
efficient and fast, with relatively high accuracy but lower than that of DNN, and the distribution of predicted values is 
inaccurate. Support Vector Machine (SVM) is fast and easy to write. The distribution of predicted values is linear, but its 
accuracy is relatively low. Overall, various models have their own focuses in terms of performance, efficiency, ease of use, 
and prediction distribution. It is necessary to select the appropriate model based on the specific application scenario.
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