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A b s t r a c t :  

Three-dimensional (3D) computer simulation models are crucial components in studying remote sensing 
radiation transmission mechanisms, playing a significant role in forward modeling of complex surfaces 
and remote sensing inversion. Over the past two decades, remarkable progress has been made in 3D 
computer modeling research, with widespread applications in analyzing surface radiation transmission 
processes, validating models and algorithms, and remote sensing inversion. To fully understand the 
development of 3D computer simulation models, explore the differences between models, and discuss 
how to better apply them to daily life and production, this paper provides a comprehensive overview 
of 3D computer simulation models in optical remote sensing. The discussion is structured around three 
main aspects: model principles, applications, and development trends. Firstly, the principles of ray 
tracing and radiosity methods, along with existing models, are briefly introduced. Secondly, the primary 
applications of 3D computer simulation models in remote sensing are summarized. Finally, the future 
development trends of these models are discussed, analyzing the trends in 3D computer simulation 
model development and remote sensing applications based on issues and needs related to operational 
efficiency, simulation accuracy, and functional integration. With the deepening of research on remote 
sensing modeling of complex surfaces, advancements in computer technology, and the application 
of multi-source remote sensing data, especially high spatio-temporal resolution data, 3D computer 
simulation models will play an increasingly important role in both theoretical research and practical 
applications of remote sensing.
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1. Introduction
Remote sensing observations can capture Earth’s surface 
reflections and radiation signals at multiple scales, 
wavelengths, angles, and time phases, making it a 
crucial tool for large-scale surface parameter inversion. 
Optical remote sensing (typically 0.4–50 μm) stands 
as a significant aspect of remote sensing modeling and 
inversion. Its observational data serves as a vital data 
source for global-scale monitoring of carbon, nitrogen, 
and water cycles, as well as radiation budgets. It plays a 
pivotal role in studies related to climate change, weather 
forecasting, vegetation monitoring, crop yield estimation, 
and drought early warning [1,2]. The accurate inversion of 
surface parameters (such as leaf area index, soil moisture 
content, temperature, and radiation components) from 
remote sensing signals is essential for realizing numerous 
remote sensing applications. Remote sensing models 
provide the theoretical foundation for understanding 
remote sensing signals and are vital tools for constructing 
linear or nonlinear functional relationships between 
these signals and ground parameters for remote sensing 
inversion [3].

Existing remote sensing models can be broadly 
classified into radiation transfer models, geometric-optical 
models, hybrid models, and three-dimensional (3D) 
computer simulation models [4,5]. Compared to radiation 
transfer, geometric-optical, and hybrid models in remote 
sensing physics, 3D computer simulation models offer 
accurate simulations of radiation transfer processes within 
three-dimensional scenes. Over the past few decades, 
modeling studies using 3D computer simulation models 
have made significant progress. Various models have 
been proposed, including DART (Discrete Anisotropic 
Radiative Transfer), RGM (Radiosity-Graphics combined 
Model), and FLIGHT (Forest Light Interaction Model). 
These models play crucial roles in forward modeling 
studies of complex surfaces, analyzing effects like 
mixed pixel and topographic variations on longwave 
and shortwave radiation budgets [6,7], and exploring 
relationships between vegetation indices such as NDVI, 
leaf area index (LAI), and photosynthetically active 
radiation fraction (FPAR) [8]. Additionally, with the 
introduction of inversion strategies like lookup tables, 
quasi-Newton iteration, and neural networks, coupled 
with improvements in computer performance, 3D 

computer simulation models are increasingly applied to 
remote sensing inversion studies, particularly in complex 
and diverse forest scenes [9]. Furthermore, advancements 
in remote sensing monitoring equipment and information 
technology have led to the emergence of near-ground 
remote sensing based on platforms like drones and land-
based robots. These can acquire high spatio-temporal 
resolution monitoring data, providing invaluable support 
for more detailed vegetation parameter inversion using 
3D computer simulation models [10].

In summary, 3D computer simulation models 
are a significant aspect of radiation transfer research, 
finding widespread applications in forward modeling 
of complex surfaces and remote sensing inversion. 
Over the past 40 years, these models have matured 
considerably. Disney et al. [11], Zhang et al. [12], Zhan 
et al. [13], and Chen et al. [14] have reviewed 3D computer 
simulation models from various perspectives. In recent 
decades, the application of high spatial resolution 
satellite and drone data, along with advancements in 
technologies like LIDAR (Active Light Detection and 
Ranging) and GPU (Graphics Processing Unit), has 
broadened the usage of 3D computer simulation models. 
Figure 1 shows the literature searches related to “remote 
sensing” and “three-dimensional” in the Web of Science 
core database (as of June 28, 2019), indicating a rise 
in research on 3D structures/models, especially since 
2013. To fully understand the differences among 3D 
computer simulation models and better apply them, this 
article reviews research progress and discusses current 
applications and future developments.

Figure 1. Number of papers related to “remote sensing” and “three-
dimensional” in Web of Science
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2. Basic principles and development 
history of the models
The foundation of optical remote sensing 3D computer 
simulation models lies in computer graphics. Computer 
graphics is a discipline that utilizes computers to 
represent, generate, process, and display graphics. Initially 
focusing on graphical research, the field has evolved 
to encompass the creation, storage, and manipulation 
of object models and images driven by technological 
advancements. The extensive scope of computer 
graphics research includes graphics hardware, standards, 
interaction techniques, raster graphics generation 
algorithms, curve and surface modeling, solid modeling, 
photorealistic graphics computation, and display 
algorithms, as well as scientific visualization, computer 
animation, natural scene simulation, virtual reality, and 
more [15].

In the field of remote sensing, computer simulation 
models have developed rapidly and are widely applied. 
Based on differences in research objects, studies on 
computer simulation models can be broadly categorized 
into those focusing on natural surfaces and those on urban 

Figure 2. Typical three-dimensional models for natural canopies

buildings. Compared to urban buildings, research on 
three-dimensional computer modeling for natural surfaces 
is more mature. Therefore, using this as an example, the 
main principles of computer modeling, namely ray tracing 
and radiosity methods, are introduced. Additionally, 
a brief review is provided on the application of three-
dimensional computer simulation models in studying 
remote sensing terrain issues.

2.1. Simulation models for natural surfaces
Figure 2 illustrates typical models and their extensions 
for natural surface simulation. In this article, apart 
from distinguishing between ray tracing and radiosity 
methods, ray tracing is further divided into flux tracing 
and Monte Carlo simulation methods. Details are 
provided in Table 1.

2.1.1. Ray tracing methods
One of the foundations of the flux tracing method is 
the discrete ordinate method, where the entire scene is 
divided into discrete voxels based on specific length, 
width, and height, such as the Flux Tracing mode in the 
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DART model. Kimes and Kirchner [37] introduced the KK 
model and provided a detailed explanation of the discrete 
ordinate method. Later, Myneni [38] conducted rigorous 
mathematical derivations for radiation interactions 
between voxels based on remote sensing radiation 
transmission principles, applying phase functions and 
hotspot functions during the calculation process. To 
account for multiple scattering within voxels and address 
the limitation of radiation transmission being based 
only on voxel centers, Gastellu-Etchegorry et al. [24] 
proposed the DART model. The radiation transmission 
process within voxels in the DART model can be briefly 
described by the following equation:

In the formula, ΩS and ΩV represent the solid angles 
of the light source and observation direction, respectively; 
Ωf denotes the normal direction of the leaf; ∆li is the 
radiation transmission distance within volume element 
i; W(l,ΩS) represents the light source vector transmitted 
along the ΩS direction for a distance l, where l [0,∆li];  
Uf stands for leaf density; gf (j,Ωf) is the leaf angle 
distribution function for type j leaves; f(j,Ωf,ΩS→ΩV)  
represents the scattering phase function for type j leaves, 
which includes both Lambertian scattering and specular 
scattering. Multiple scattering between volume elements 
can be calculated iteratively based on single scattering. 
In the DART model, five scattering events can generally 
meet the accuracy requirements of most applications. The 
DART model has undergone several improvements. For 
example, Guillevic et al. [39] extended the DART model 
to the thermal infrared spectrum; Gastellu-Etchegorry et 

Table 1. Typical three-dimensional computer model for natural canopies

Model Literature Theory Scene Basic unit Band

FLIGHT North, 1996 [16] Ray tracing/Monte Carlo Vegetation Volume element
Visible light, Near-
infrared, LIDAR

FLIES Kobayashi and Iwabuchi, 2008 [17] Ray tracing/Monte Carlo Vegetation Volume element Visible light, near-infrared

Librat Lewis, 1999 [18] Ray tracing/Monte Carlo Vegetation Surface element Visible light, near-infrared

PARCINOPY España et al., 1999 [19] Ray tracing/Monte Carlo Vegetation Surface element Visible light, near-infrared

SPRINT Thompson and Goel, 1999 [20] Ray tracing Vegetation Surface element Visible light, near-infrared

Raytran Govaerts and Verstraete, 1998 [21] Ray tracing/Monte Carlo Vegetation Volume element Visible light, near-infrared

Rayspread Widlowski et al., 2006 [22] Ray tracing/Path tracing Vegetation Volume element Visible light, near-infrared

PBRT Pharr et al., 2016 [23] Ray tracing/Monte Carlo
Vegetation, 
Architecture

Surface element Visible light, near-infrared

DART
Gastellu-Etchegorry et al., 1996 [24];
Gastellu-Etchegorry et al., 2017 [25];

Gastellu-Etchegorry et al., 2004, 2015 [26,27]

Ray tracing/Flux tracing, 
Monte Carlo

Vegetation, 
Architecture, 

Mountain

Volume element, 
Surface element

Visible, near-infrared, 
thermal infrared, LIDAR

DIRSIG
Schott et al., 1999 [28]; Goodenough and 

Brown, 2017 [29]

Ray tracing/Monte Carlo, 
Path tracing

Vegetation, 
Architecture, 

Mountain

Volume element, 
Surface element

Visible, near-infrared, 
thermal infrared, LIDAR

VBRT Li et al., 2018 [30] Ray tracing/Path tracing Vegetation Volume element Visible light, near-infrared

LESS Qi et al., 2019 [31] Ray tracing/Monte Carlo, 
Path tracing

Vegetation, 
Mountain

Volume element Visible light, near-infrared

DIANA Goel et al., 1991 [32] Radiosity Vegetation Surface element Visible light, near-infrared

RGM、TRGM
Phong-RGM

Qin and Gerstl, 2000 [33]; Xie et al., 2007 
[34]; Liu et al., 2007 [35] Radiosity Vegetation Surface element

Visible light, near-infrared, 
thermal infrared

RAPID Huang et al., 2013 [36] Radiosity Vegetation Surface element
Visible light, near-infrared, 

thermal infrared
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al. [26] expanded the applicable scenarios of the DART 
model, enabling radiation transmission process simulation 
in complex scenes including vegetation canopies, urban 
buildings, and terrain. Gastellu-Etchegorry et al. [27] 
released DART version 5, which added simulation of 
LIDAR data based on simulations in the visible, near-
infrared, and thermal infrared bands for complex scenes. 
Recently, Gastellu-Etchegorry et al. [25] incorporated 
fluorescence simulation into the DART model. To 
improve the simulation accuracy of the DART model, 
Yin et al. [40] proposed a new discretization and sampling 
scheme called Iterative Uniform Squared Discretization 
(IUSD) for directional hemispherical space. Subsequently, 
to accurately simulate airborne and near-ground 
observations, Yin et al. [41] considered the field of view 
angle effect.

Monte Carlo simulation is generally considered the 
most accurate method in three-dimensional computer 
simulations [42]. It simulates canopy bidirectional 
reflectance factor (BRF) and surface albedo by tracking 
photon trajectories and considering photon numbers/
energy. The Monte Carlo method can be further 
subdivided into forward ray tracing and Monte Carlo 
path tracing methods. The forward simulation process 
of radiation transmission based on photon energy can be 
represented by the following formula [31]:

In the formula, PQ(λ) and P0(λ) represent the initial 
energy of photon incidence and the energy after Q 
collisions in the c band, respectively. ωi and ω0 are the 
directions of incidence and emergence, respectively. 
f(q,ωi,ω0,ωi) is the scattering phase function for the photon 
undergoing the qth collision in the ωi band. Pq is the 
proportion of reflection and transmission during photon 
scattering. The order of multiple scattering simulated is 
determined by Q. The development of three-dimensional 
simulation based on the Monte Carlo principle is 
relatively mature. North [16] and Lewis [18] proposed 
the FLIGHT and Librat models based on the structural 
characteristics of forests and the Botanical Plant Modeling 
System (BPMS), respectively, utilizing the Monte Carlo 
principle. Subsequently, Kobayashi and Iwabuchi [17] 

extended the FLIGHT model by adding an atmospheric 
radiation transmission component, introducing the FLiES 
(Forest Light Environmental Simulator) model. Govaerts 
and Verstraete [21] presented the pure Monte Carlo 
model Raytran. Since it traces all photon paths emitted 
by the light source without introducing a weighting 
mechanism during photon collisions, it suffers from slow 
computation speed and low efficiency. Later, Widlowski 
et al. [22] proposed the Rayspread model based on the 
Raytran model. It introduces a secondary ray mechanism, 
which emits sub-rays toward the sensor while tracing 
the main ray to estimate the energy entering the sensor. 
This significantly improves the convergence speed of 
the simulation. The PBRT (physically based rendering) 
model proposed by Pharr et al. [23] has a wide range of 
applications in remote sensing and computer vision. 
Besides flux tracing simulation, the DART model also 
integrates a Monte Carlo forward simulation module 
[27]. To enhance the efficiency of Monte Carlo models in 
image simulation, a reverse tracing or Monte Carlo path 
tracing method is employed. The rendering process can 
be represented by Equation (3):

In the formula, Li(q,ωi), Le(q,ω0) and L0(q,ω0) 
represent the incident radiance, self-emitted radiance, 
and the radiance received by the sensor at collision point 
q respectively. Currently, three-dimensional computer 
simulation models that support path tracing include LESS 
(Large-scale remote sensing data and image simulation 
framework over heterogeneous 3D scenes) model, VBRT 
(Voxel-Based Radiative Transfer) model, and DIRSIG 5 
(Digital Imaging and Remote Sensing Image Generation) 
model. The LESS model incorporates both forward 
and reverse Monte Carlo simulation modes, making it 
suitable for simulating large-scale scenes [31]. Beyond the 
modeling theory of Monte Carlo path tracing, the VBRT 
model also integrates an octree-based scene subdivision 
strategy to utilize LIDAR point cloud data for the 
construction of three-dimensional scenes [50]. To enhance 
the computational efficiency of the model, DIRSIG 5 
adds path-tracing simulation strategies, SQT (spherical 
quad-tree) data structures, and GPU acceleration modules 
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to the foundation of DIRSIG 4 [29].

2.1.2. Radiosity method
The radiosity method establishes the radiative interaction 
between surface elements in the entire scene through a 
series of radiative equilibrium equations:

In the formula, Bi represents the radiosity of a 
surface element, which is the total radiant flux density 
leaving the surface element. Ei denotes the radiation 
contribution from the sun, atmosphere, and the surface 
element itself. The term xi∑jFi,jBj accounts for the 
radiation contribution from all adjacent surface elements, 
where xi represents the transmittance τ or reflectance p 
of the surface element, which can be determined based 
on the positional relationship between surface elements. 
The calculation of the visibility factor Fi,j between surface 
elements and the solution of the radiosity equation are 
crucial processes in radiosity simulation. The former 
can be achieved through rasterization or ray tracing 
methods, while the latter can be implemented using 
iterative optimization techniques such as the Gauss-Seidel 
method. The ray tracing method can calculate sequential 
scattering terms for surface or volume elements, while the 
radiosity method only provides the final result of multiple 
scattering. Borel et al. [43] and Goel et al. [32] elaborated on 
the principles of radiosity, with Goel et al. [32] introducing 
the L-system to propose the DIANA model within the 
radiosity framework. Based on the DIANA model, Qin 
and Gerstl [33] optimized sensor observation modes, 
calculated the visible proportion of surface elements in 
the scene, and lighting/shadow ratios, presenting the 
RGM model. Subsequently, the RGM model underwent 
several improvements. For instance, Xie et al. [34] 

considered leaf specular reflection in the RGM model, 
while Liu et al. [35] added an emission term for surface 
elements in the RGM model, introducing Thermal RGM 
(TRGM). As the radiosity method requires constructing 
radiative equilibrium equations for each surface element, 
its solution efficiency significantly decreases with an 
increasing number of surface elements. Therefore, the 
radiosity method is often used for simulation studies 

of small-scale crop or forest scenes. To expand the 
application scope of the radiosity method, Chelle and 
Andrieu [44] combined the radiative transfer model (SAIL) 
with the radiosity method, proposing the nested radiosity 
model PARCINOPY. Huang et al. [36] improved the 
computational efficiency of the model by using a small 
number of large porous surface elements to replace a large 
number of small solid surface elements in the construction 
and solution process of large-scale forest scenes, known 
as the RAPID model. The RAPID model has undergone a 
series of optimizations, such as considering the effects of 
terrain undulations and the atmosphere, adding multiple 
observation modes, and supporting the simulation of 
LIDAR and microwave data [45].

2.1.3. Scene construction
The reconstruction of complex scenes is an important 
prerequisite for three-dimensional computer simulation 
models. The basic unit of radiosity models is triangular 
or polygonal surface elements, while the basic unit 
of ray tracing models can be surface elements or 
volume elements. Typical vegetation canopies include 
homogeneous canopies, row crops, forests, and mixed 
scenes. Generation systems for vegetation canopies 
are crucial methods for constructing vegetation scenes, 
such as L-systems, fractal theory, particle systems, and 
iterative function systems [46]. For homogeneous canopies, 
randomly distributed surface elements can be generated 
for reconstruction. The MELS (Modified Extended 
L-Systems) method [33] and the BPMS (Botanical Plant 
Modelling System) method [18] can be considered 
special L-systems that have been used to simulate 
the three-dimensional structure of crops like corn, 
cotton, and wheat. España et al. [19] proposed a three-
dimensional structural model for corn based on a series of 
parametrization methods and simulated reflectivity using 
the Monte Carlo model PARCINOPY. Zhang et al. [47] 
simulated the three-dimensional structural characteristics 
of trees using Onyxtree software and conducted a 
simulation study using the radiosity model RGM. 
Additionally, OpenAlea and GroIMP are two of the most 
important platforms for simulating the three-dimensional 
structure of crops, capable of simulating the three-
dimensional structure and light transmission processes of 
various crops such as wheat, corn, and rice.
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Besides model simulation methods, LIDAR 
measurement techniques can acquire three-dimensional 
structural information corresponding to the studied 
surface. In recent years, LIDAR (Light Detection and 
Ranging) technology for 3D measurement has rapidly 
developed. Coupled with the widespread use of portable 
platforms such as drones, research and applications 
utilizing LIDAR sensors mounted on these platforms 
have become increasingly prevalent, providing valuable 
data sources for 3D modeling. For instance, Côté et al. 
[48] introduced a method for reconstructing the three-
dimensional structure of trees based on LIDAR data 
and simulated canopy reflectance and directional 
transmittance using the Rayspread model in the 
reconstructed scenes. Schneider et al. [49] presented an 
application scheme for the DART model, which relies 
on both LIDAR data and ground measurement data, and 
compared the impact of modeling approaches based on 
tree crown structure and voxel assumptions on remote 
sensing imagery. Additionally, Liu et al. [10] developed a 
3D canopy model for wheat based on LIDAR data and 
further proposed an inversion algorithm for wheat canopy 
leaf area index.

2.2. Simulation models for urban buildings 
Three-dimensional computer simulation models are 
widely used in the study of urban building modeling. 
Here, we focus on the discussion of remote sensing 
optical modeling research, as summarized in Table 2. 
The 3D computer simulation of urban buildings can be 
broadly categorized into three types: simulation of simple 
building scenes, simulation of complex building scenes, 

and simulation of complex scenes including buildings 
and vegetation. In simple building scenes, buildings are 
often simplified as regularly distributed cubes. Based 
on a geometric optics-like modeling approach, Soux 
et al. [56] proposed the SUM model, which considers 
the sensor’s field of view effect and can calculate 
the visible illumination/shadow ratio of each facet in 
the sensor’s field of view. Kanda et al. [57] introduced 
the SM/HM model, which calculates longwave and 
shortwave radiation in the scene based on the geometric 
characteristics of building cubes and their mutual 
occlusion relationships. Fontanilles et al. [58] assumed 
buildings as “corridor” structures and proposed the 
TITAN model, primarily used to explain the contribution 
of various building components to remote sensing 
signals and simulate the directional thermal radiation 
characteristics of urban buildings. Zhan et al. [55] utilized 
the OpenGL-based computer model CoMSTIR for the 
study of urban thermal inertia. To reconstruct the 3D 
structure of complex urban buildings and model radiation 
transfer, Thomas et al. [54] proposed the AMARTIS model 
based on the ray-tracing method, which considers the 
influence of windows in buildings and the atmosphere. 
Krayenhoff and Voogt [51] presented the TUF-3D model, 
which combines ray-tracing and radiosity methods. 
These models primarily focus on simulating the building 
components in cities. However, vegetation parts such 
as parks and street trees also impact remote sensing 
observations in urban areas. Therefore, models like 
DART, ENVI-met proposed by Bruse and Fleer [50], and 
SOLENE introduced by Hénon [52] enable the simulation 
of remote sensing observation signals in complex scenes 

Table 2. Typical three-dimensional computer models for building canopies

Model Literature Theory Scene Basic unit Band

Envi-met Bruse and Fleer, 1998 [50] Finite difference
Buildings, 
Vegetation

Voxel
Visible light, Near-infrared, 

Thermal infrared

TUF-3D
Krayenhoff and Voogt, 

2007 [51] Ray tracing, radiosity Buildings Surface Elements
Visible light, Near-infrared, 

Thermal infrared

SOLENE Hénon, 2008 [52] Radiosity
Buildings, 
Vegetation

Surface Elements
Visible light, Near-infrared, 

Thermal infrared

AMARTIS
Miesch et al., 2004 [53]

Thomas et al., 2011 [54]
Ray tracing/Monte 

Carlo
Buildings Surface Elements Visible light, Near-infrared

CoMSTIR Zhan et al., 2012 [55] Radiosity Buildings Surface Elements Thermal infrared
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including buildings and vegetation. Currently, 3D 
structure reconstruction technology for urban buildings 
is relatively mature. In 3D modeling research, besides 
existing datasets from municipal systems [59,60], the 
reconstruction of 3D structures of urban buildings can be 
achieved through observed videos and LIDAR data.

2.3. Simulation models for mountainous areas 
Mountainous areas possess complex structures, and 
currently, there is relatively limited research on radiation 
transfer specific to these regions. Based on the Monte 
Carlo ray tracing model, Chen and Liou [61] simulated 
the three-dimensional surface thermal radiation transfer 
process. Later, Liou et al. [62] extended this Monte Carlo 
ray tracing model to mountainous scenes and used it to 
simulate the downward shortwave solar radiation and 
longwave thermal radiation in the Tibetan Plateau region. 
They compared the radiation differences between one-
dimensional and three-dimensional surface assumptions. 
Gu et al. [6] proposed a parameterization scheme based 
on the Monte Carlo ray tracing model mentioned above 
and analyzed the influence of topography on the temporal 
and spatial variations of solar radiation using the Weather 
Research and Forecasting (WRF) model. Subsequently, 
Lee et al. [63] conducted a study on surface radiation 
budget in the Tibetan Plateau region using this model. 
To apply the RGM model to radiation transfer research 
in mountainous scenes, Zhang et al. [12] proposed a 
strategy of dividing large scenes into sub-scenes during 
the computation process, known as the LRGM model. 
Xie et al. [64] presented a strategy that combines the RGM 
model with the BRDF model. The DART model has also 
been extended and applied to mountainous scenes. For 
instance, Malbéteau et al. [65] introduced a normalization 
method based on the DART model to eliminate the 
influence of topography on surface temperature. Three-
dimensional structural data for mountainous scenes can 
be obtained from global DEM products, such as the 30 
m spatial resolution global ASTER GDEM v2 product 
produced by NASA and METI, the SRTM3 DEM 
product, and the GTOPO30 product from NASA.

3. Applications of the models 
With the development of high spatio-temporal resolution 

remote sensing technology, the application areas of three-
dimensional computer simulation models are becoming 
increasingly widespread. Figure 3 demonstrates polar 
plots of reflectivity/directional brightness temperature 
simulated using the TRGM and DART models for 
ridged cornfields, discrete forests, and simple building 
scenes in the red, near-infrared, and thermal infrared 
bands. Due to the influence of three-dimensional surface 
structures and differences in the physical properties of 
components, remote sensing signals vary with the study 
objects and observation angles. As three-dimensional 
computer simulation models can accurately simulate 
surface radiation transfer processes, they can be used 
to quantify the effects of mixed pixels and topographic 
relief in forward radiation transfer modeling and remote 
sensing inversion. When experimental data is limited 
or missing, three-dimensional computer simulation 
models can also be employed for sensitivity analysis and 
indirect validation of models or inversion algorithms. 
To summarize the application status of different models, 
Figure 4 compares the number of citations and the 
number of related publications for various models in the 
Web of Science core database. The area corresponding to 
each model in Figure 4 represents its proportional weight 
(as of September 10, 2019). The citation counts in Figures 
4(a) and 4(c) correspond to the original literature where 
the models were first introduced, indicating the level 
of recognition for the models and theories. The number 
of model-related publications retrieved in Figures 4(b) 
and 4(d), i.e., publications mentioning the model names, 
reflects the subsequent development and application of 
the models. From Figure 4, it is evident that the DART 
model and the ENVI-MET model are widely used.

3.1. Modeling analysis of three-dimensional real 
structure scenes
Three-dimensional computer simulation models enable 
complex simulations of multi-band, multi-angle, multi-
temporal, and multi-scale remote sensing observations 
of the Earth’s surface. These models are instrumental in 
understanding the impact of three-dimensional surface 
scenes on remote sensing signals.

Computer simulation models are used to analyze 
relationships between vegetation indices (VI), leaf area 
index (LAI), and fraction of photosynthetically active 
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 (a)Row-planted maize           (b)Red reflectance     (c)NIR reflectance        (d)Brightness temperature 

(e)Row-planted maize   (f)Red reflectance        (g)NIR reflectance    (h)Brightness temperature

(i)Simple building      (j)Red reflectance      (k)NIR reflectance    (l)Brightness temperature

(a)The number of citations of models 
corresponding to nature surfaces 

(b)The number of model’s corre-
sponding papers

(c)The number of citation of 
models corresponding to urban

surfaces

(d)The number of model’s corre-
sponding papers

Figure 3. Scenes and polar plots

Figure 4. Comparison of number of citations and papers for different models
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radiation (FPAR). For instance, compared to the one-
dimensional SAIL model, the RIRI-3D model provides 
simulation results that are closer to experimental 
observations from African savannas, making it suitable 
for analyzing the relationship between NDVI and 
FPAR [66]. Based on the DIANA model, Goel and Qin [8] 
analyzed the relationship between VI, LAI, and FPAR in 
three-dimensional real structure scenes of corn and poplar 
trees. Guillen-Climent et al. [67] utilized the FLIGHT 
model to estimate FIPAR and perform scale conversion 
analysis in furrow orchard scenes. Validation based on 
drone and ground measurement data demonstrated the 
high accuracy of simulation results from this computer 
simulation model.

These models are also applied to simulate visible 
and near-infrared bands of bidirectional reflectance factor 
(BRF), bidirectional reflectance distribution function 
(BRDF), and albedo in real structure scenes. Widlowski 
et al. [68] used the Raytran model to simulate BRF in the 
red and near-infrared bands for a three-dimensional forest 
scene, achieving more accurate results compared to one-
dimensional models, with differences up to 40% in high-
resolution images. The Rayspread and DART models 
are employed for simulating BRF in three-dimensional 
forest scenes and high-resolution remote sensing imagery, 
respectively. Compared to simpler models, three-
dimensional computer simulation models offer a more 
precise analysis of the impact of canopy branches and 
trunks [68,69]. The DART model was utilized by Duthoit 
et al. [19] to simulate the BRDF of row-planted corn 
and analyze the influence of canopy clumping effects. 
In urban settings, the TUF-3D model aids in studying 
diurnal variations of effective albedo in buildings [51].

Furthermore, computer simulation models are 
used to simulate thermal infrared band emissivity and 
directional brightness temperature in three-dimensional 
scenes. Monte Carlo forward and inverse models 
simulate effective emissivity for non-isothermal and 
inhomogeneous pixels, providing valuable data support 
for emissivity definitions [61,71]. Three-dimensional 
computer simulation models have been employed to 
investigate the thermal radiation directional characteristics 
of various scenes. For example, the TRGM model, the 
ray tracing POY-RAY method, and the DART model have 
been used to simulate directional brightness temperature 

in row-planted corn, vineyard, and sparse forest 
scenes, respectively. Experimental data comparisons 
have shown that three-dimensional computer models 
yield accurate results and effectively capture the 
influence of structural features on thermal radiation 
directional characteristics in these scenes [72-74]. Given 
the pronounced heterogeneity of urban building scenes, 
three-dimensional computer simulation models find 
even broader applications. Specifically, TITAN, POV-
Ray/SOLENE, and CoMSTIR have been utilized to 
simulate directional brightness temperature in buildings, 
emerging as essential tools for studying the thermal 
environment of urban structures [55,58-60].

3.2. Validation of forward models and inversion 
algorithms
Ground-based and airborne remote sensing experiments 
can provide validation data for forward simulation 
models and inversion algorithms. However, remote 
sensing experiments are costly in terms of manpower 
and resources, and the experimental data is limited, only 
corresponding to specific scenes and environmental 
elements. Especially in thermal infrared experiments, 
surface temperature varies continuously with solar 
angle and meteorological conditions. Three-dimensional 
computer simulation models can serve as important tools 
for indirect validation of algorithms and models.

Examples of indirect validation of parameterized 
models include: Qin and Goel [75] compared the 
performance of six parameterized hotspot models in 
homogeneous canopies based on the DIANA model. 
The results showed that the model that considered leaf 
size, shape, and orientation using a geometric-optical 
kernel performed best. Subsequently, Qin et al. [76] 
indirectly validated the performance of parameterized 
hotspot models in inhomogeneous crop and forest 
scenes using the DIANA model and proposed a method 
for parameterized models to consider mutual shading 
between components. Cao et al. [77] evaluated the 
performance of four parameterized thermal radiation 
directionality models in discrete forest scenes using the 
DART model as a benchmark.

Indirect validations of geometric-optical and hybrid 
models include: Kötz et al. [78] indirectly validated the 
simulation accuracy of the hybrid model GOESAIL in 
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forest scenes using the three-dimensional FLIGHT model. 
Yin et al. [79] indirectly validated the simulation accuracy 
of the PLC model using the FLIGHT model. Pinheiro et 
al. [80] indirectly validated the simulation accuracy of the 
geometric-optical model MGP in the thermal infrared 
band using the DART model. Bian et al.[ 81] indirectly 
validated the simulation accuracy of the four-component 
UFR97 model, considering the vegetation clumping 
index, in row-planted crops and discrete forest scenes 
using the TRGM model.

Additionally, apart from indirect validation of 
models and algorithms, three-dimensional computer 
simulation models can also aid in the implementation 
of remote sensing experiments. For instance, model 
simulation results can serve as a reference for remote 
sensing experiments, providing theoretical support for 
selecting appropriate sampling times, frequencies, and 
locations for remote sensing experiments.

3.3. Remote sensing inversion of surface 
parameters 
With the application of remote sensing inversion 
strategies such as lookup tables and neural networks, the 
use of three-dimensional computer simulation models 
as inversion tools for surface parameter inversion has 
become increasingly prevalent, particularly in complex 
and diverse forest scenes. Kimes et al. [82] conducted 
inversions of forest cover, LAI, and soil reflectance 
based on the DART model. The results indicated that 
compared to simple lookup table methods, the neural 
network approach provided stable, accurate inversion 
results with faster computation speeds. Combal et al. [9] 

performed inversions of forest LAI, chlorophyll content, 
and effective radiation based on the PARCINOPY model, 
comparing the advantages and disadvantages of lookup 
tables, quasi-Newton iteration, and neural network 
methods in solving ill-posed inversion problems using 
prior knowledge. Banskota et al. [83] proposed an inversion 
algorithm based on the DART model and discrete 
wavelet transform, utilizing visible and near-infrared 
hyperspectral data to invert forest LAI. Malenovský et 
al. [84] introduced an inversion algorithm based on the 
three-dimensional DART model and continuum removal, 
employing airborne high spatial resolution data to invert 
chlorophyll content in vegetation canopies. Ferreira 

et al. [85] presented an algorithm for inverting single-
tree structure and chemical parameters based on the 
DART model and lookup tables, estimating narrow-band 
vegetation indices and the proportions of photosynthetic 
vegetation, non-photosynthetic vegetation, and shadows 
within pixels using hyperspectral data. Additionally, a 
global long-term remote sensing product for leaf area 
index was developed based on a three-dimensional 
radiative transfer model combined with MODIS imagery. 
The main algorithm of this product employs a lookup 
table generated by a stochastic radiative transfer model 
constructed from a three-dimensional radiative transfer 
model and a simplified version of it to invert LAI [86,87].

3.4. Application analysis tools 
Three-dimensional computer simulation models can 
accurately simulate the relationship between component 
spectra or temperature and remote sensing observations at 
the canopy top, making them useful as analysis tools for 
various application problems such as fires, irrigation, and 
biomass. In African savannas, which feature a structural 
characteristic of upper tree canopies and lower grassland, 
Disney et al. [88] analyzed changes in surface reflectance 
before and after fires based on the Librat model. Three-
dimensional computer simulation models can distinguish 
the radiative contributions of different surface components 
and can be employed for analyzing burned area estimation 
algorithms when observational data is missing. Sepulcre-
Cantó et al. [89] proposed a method to distinguish between 
irrigation and rainfall based on surface temperature 
and NDVI, comprehensively analyzing this approach 
using the DART model. Malbéteau et al. [65] introduced a 
topographic correction method for surface temperature 
based on energy balance using the DART model. 
Comparisons with ASTER data demonstrated that the 
newly proposed method is more accurate than traditional 
multi-parameter linear regression techniques. Roberts et 
al. [90] analyzed the impact of canopy three-dimensional 
structure on combustible biomass inversion using the 
DART model.

4. Outlook for the model 
Three-dimensional computer simulation models are 
crucial components of radiation transfer modeling. Over 
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several decades of development, the focus of these models 
has gradually shifted from “how to model” to “how to 
better apply the models.” Although existing models have 
made significant progress, they still face challenges in 
practical applications. This section discusses the future 
development of these models from perspectives such as 
computational efficiency, simulation accuracy, and model 
integration.

4.1. Reducing computational time 
Compared to one-dimensional and two-dimensional 
models, three-dimensional computer simulation models 
often suffer from slow computational speeds and long 
processing times, hindering their direct application 
in large-scale scene simulations and remote sensing 
inversions. Methods to improve model efficiency include 
hardware acceleration and algorithm optimization.

In recent years, with the advancement of computer 
graphics technology, high-efficiency image rendering 
software such as PBRT and LuxCoreRender has been 
gradually applied to remote sensing data simulation to 
enhance accuracy. Additionally, some three-dimensional 
computer simulation models have begun to incorporate 
the latest algorithms from the field of computer graphics. 
For instance, the DART model has integrated Embree, a 
ray-tracing library released by Intel, while the DIRSIG 
model has undergone reconstruction, incorporating path-
tracing algorithms from computer graphics. Besides 
software improvements, advancements in computer 
hardware also support the rapid application of these 
models. Most existing models rely on CPU cores for 
computation. However, with the development of GPU 
technology, models based on GPU cores are expected to 
achieve significantly higher computational efficiency. 
Several models, such as LESS and VEBX, are planned to 
release GPU versions in the future.

Reducing computational time through hardware 
upgrades and developing new efficient simulation/
rendering theories is the most direct approach. When 
studying homogeneous scenes or portions of scenes, 
the operational efficiency of the radiosity model can 
be improved by introducing high-precision analytical 
models or equivalent facets. For example, Chelle 
and Andrieu [44] and Xie et al. [64] enhanced efficiency 
by combining their models with SAIL and BRDF, 

respectively. Huang et al. [36] improved model efficiency 
by using porous large facets to represent numerous 
small solid facets, although this method risks reducing 
simulation accuracy. Monte Carlo ray-tracing models 
include forward and backward simulation modes, each 
with its own advantages and disadvantages. The forward 
mode is suitable for simulating energy balance-related 
issues, while the backward mode is more appropriate for 
simulating imagery and LiDAR data [30,31]. Therefore, 
models that incorporate both forward and backward 
modes possess stronger application capabilities and 
operational efficiency. Additionally, inversion strategies 
employing lookup tables, quasi-Newton iteration, and 
neural networks provide effective pathways for the 
application of three-dimensional computer simulation 
models in remote sensing inversion.

4.2. Improving simulation accuracy 
In the fourth cross-validation of radiation transfer models 
conducted by Widlowski et al. [42], several typical three-
dimensional computer simulation models were compared, 
revealing certain discrepancies even among Monte Carlo 
models. This underscores the necessity of continuing to 
enhance model accuracy.

Apart from optimizing the physical principles 
and radiation transfer mechanisms inherent in three-
dimensional computer simulation models, simulation 
accuracy is also influenced by the level of detail in 
reconstructing the object of study and the spatial 
resolution of the sensor. Simplified scene-based computer 
simulations often fail to meet the demands of high-
resolution remote sensing research. For instance, models 
like DART, TITAN, and SM/HM simplify building units. 
Conversely, three-dimensional modeling based on refined 
(more realistic) scenes is more beneficial for architectural 
design and high-resolution remote sensing applications. 
For example, the AMARTIS model considers the 
presence of highly reflective glass in buildings, resulting 
in more consistent simulation results with observations. 
Widlowski et al. [91] analyzed the impact of scene voxel 
size and sensor spatial resolution on Rayspread model 
simulation results, providing spatial resolution guidelines 
for different voxel sizes to achieve 95% simulation 
accuracy.
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4.3.  Enhancing model comparison and 
validation 
Three-dimensional computer simulation models are 
often used as indirect validation tools for simpler models 
and algorithms. Therefore, the accuracy of these three-
dimensional models themselves is a crucial consideration 
for such applications. Currently, validation of three-
dimensional computer simulation models remains 
inadequate. Existing models are typically validated based 
on limited ground or airborne experimental data during 
their initial development. Dedicated validation efforts for 
these models are scarce. For instance, Sobrino et al. [92] 
evaluated the performance of the DART model on bare 
soil, grassland, and desert using airborne AHS, satellite 

ASTER data, and ground measurements. Additionally, 
due to inherent limitations in remote sensing experiments, 
such as spatial scale issues and temporal variations in 
heterogeneous scenes, cross-validation among computer 
simulation models has become a primary validation 
method. Apart from the comparative study conducted 
by Widlowski et al. [42], Table 3 summarizes recent 
comparisons of model accuracy and computational 
time based on the same reference data. Currently, cross-
validation efforts are primarily focused on the visible and 
near-infrared spectral bands, while cross-validation in the 
thermal infrared band remains limited.

Direct validation based on remote sensing 
experimental data is highly essential. Compared 

Table 3. Evaluation results based on inter-comparison between models

Case Model Scene Cross-validation between models Runtime

1

RAPID vs RAMI 
(SPRINT3,
RAYTRAN, 

RAYSPREAD)

Forest
(ellipsoidal crown)

BRF:
RMSE (red) = 0.002
RMSE (NIR) = 0.008

—

Forest
(conical crown)

BRF:
RMSE (red, NIR) = 0.02 —

Birch forest BRF：
RMSE (red, NIR) < 0.033 —

3

VBRT vs PBRT

Forest S3

Digital image:
RMSE (red) = 0.5007
RMSE (NIR) = 4.2542

BRFs:
RMSE (red) = 0.0032
RMSE (NIR) = 0.0373

—

DART vs PBRT

Digital image:
RMSE (red) = 2.4409
RMSE (NIR) = 9.0624

BRFs:
RMSE (red) = 0.0046
RMSE (NIR) = 0.0578

—

4

LESS vs DART Ellipsoidal crown
BRFs:

RMSE (red) < 0.0002
RMSE (NIR) < 0.003

—

LESS vs DART Ellipsoidal/Cylindrical 
crown

BRFs:
RMSE (NIR) < 0.001 —

LESS vs DART
 (Facet)

LESS vs DART
 (Turbid)

Forest canopy

Digital Image (0.2 m):
R2 (NIR, Facet) 0.92

R 2 (NIR, Turbid) 0.92
Digital Image (1.0 m):
R2 (NIR, Facet) 0.99
R2 (NIR, Turbid) 0.97

Digital Image (0.2 m) 
DART (Triangle): 14.1 h; 

DART (Turbid): 3.0 h; 
LESS: 0.6 h

5 RAPID vs RGM

Homogeneous scene — View factor: RGM: 30 min, RAPID 1 min
BRF (200 angles): RGM 8 min, RAPID 6 min

Row structure scene — View factor: RGM: 2 min, RAPID 1 min
BRF (200 angles): RGM 8 min, RAPID 7 min

Checkerboard scene — View factor: RGM > 150 min, RAPID 3 min
BRF (200 angles): RGM crashed, RAPID 13 min
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to ground-based and manned aircraft experiments, 
unmanned aerial vehicle (UAV) remote sensing offers 
convenience, flexibility, and a larger experimental area, 
making it an increasingly important tool for remote 
sensing experiments. For instance, García-Santos et 
al. [93] utilized UAVs to obtain high-resolution ground 
temperature distributions. Therefore, UAV remote sensing 
data will serve as a crucial data source for validating 
three-dimensional computer simulation models.

4.4. Multi-functional integration
4.4.1. Multi-band integration 
Multi-band joint simulation serves as a significant 
theoretical foundation for studying the application of 
multi-source remote sensing data. Incorporating more 
bands of information can enhance the accuracy of surface 
parameter inversion [94]. Three-dimensional computer 
simulation models play a vital role in multi-band joint 
simulation of complex surfaces. Several models like 
DART, RGM, and RAPID were initially developed for 
the visible and near-infrared bands and later expanded to 
other bands. Multi-band integration primarily involves 
two aspects in this context: (1) Expansion from visible 
and near-infrared bands to thermal infrared bands. 
For instance, to understand and define the effective 
emissivity of mixed pixels, Monte Carlo forward and 
backward simulation methods have been extended to 
the thermal infrared band. By considering the radiative 
emission term of components, models such as DART, 
RGM, and RAPID simulate the directional emissivity 
and brightness temperature of canopies. (2) Integrated 
simulation of optical and microwave bands. Although 
microwave remote sensing is not discussed in this article, 
the joint simulation of optical and microwave bands is 
currently an important research direction. For example, 
Disney et al. [95] constructed a three-dimensional scene 
to simultaneously simulate remote sensing observations 
in optical and microwave bands; Huang et al. [45] added 
microwave data simulation to the RAPID2 model; 
Zhang et al. [47] developed the 3-DMultiSim platform, 
which simulates remote sensing observations in visible, 
near-infrared, thermal infrared, and microwave bands. 
Apart from expanding the spectral range, modern three-
dimensional computer simulation models have also 
enhanced their ability to simulate LIDAR observation 

data, such as the RAPID2, DART, and FLIGHT models.

4.4.2. Energy balance module integration 
In the visible and near-infrared bands, canopy reflectance 
and albedo are primarily determined by the three-
dimensional structure of the canopy, the spectral 
characteristics of its components, and the ratio of direct 
to diffuse radiation. However, in the thermal infrared 
band, apart from these factors, the directional brightness 
temperature of the canopy is also influenced by 
component temperatures, which constantly vary with solar 
and environmental radiation as well as meteorological 
conditions. By combining radiation transfer and energy 
balance modules, it becomes possible to simulate the 
temporal variation of surface temperature and thermal 
radiation directional characteristics. The integration of 
three-dimensional computer simulation models with 
energy balance is a crucial method for extending the 
temporal scale of complex surfaces, enabling a more 
comprehensive analysis of thermal radiation directional 
features and validation of other models. Gastellu-
Etchegorry [96] augmented the DART model with an 
energy balance module similar to the corridor model, 
named DARTEB, expanding its capability for continuous 
time simulation in the thermal infrared band. Smith et al. 
[97] integrated an energy balance module into a radiosity 
model and subsequently calculated the illumination 
and shadow ratios of facets using a ray-tracing method, 
applying it to non-uniform row crop scenes. Huang et 
al. [98] inputted component temperatures simulated by 
the one-dimensional CUPID model into the TRGM 
model, analyzing the temporal variation of thermal 
radiation directionality in row crops. To fully leverage 
the advantages of three-dimensional computer simulation 
models, considering the impact of three-dimensional 
structure during component temperature simulation, Bian 
et al. [99] directly added a radiation transfer module to the 
TRGM model, introducing the TRGMEB model. Later, 
to simulate thermal radiation distribution in large-scale 
scenes, Bian et al. [100] combined the RAPID model with 
energy balance based on the same approach, presenting 
the RAPIDEB model.

The integration of three-dimensional computer 
simulation models with energy balance methods forms the 
foundation for studying urban heat island effects and the 
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cooling impact of vegetation in urban built environments. 
Models like DARTEB and TUF-3D incorporate energy 
balance modules based on the corridor hypothesis, which 
considers mutual shading among three-dimensional 
structures during radiative transfer while assuming a 
corridor-like geometric configuration for buildings during 
calculations of sensible, latent, and surface heat fluxes. 
To more accurately simulate the energy budget processes 
in complex urban built environments, models like ENVI-
met and SOLENE employ strategies from fluid dynamics 
software to calculate wind speed and water heat fluxes.

4.4.3. Integration of crop growth modules
Besides the diurnal variations in meteorological 
conditions mentioned above, seasonal changes in three-
dimensional structures such as Leaf Area Index (LAI) 
and leaf angle distribution also occur due to vegetation 
growth. Existing three-dimensional simulations often 
target specific research scenarios and meteorological 
conditions, with pre-generated three-dimensional 
surface structures, thus can be considered as static scene 
simulations to some extent. The integration of crop 
growth models with radiative transfer models addresses 
the issue of changing three-dimensional structures of 
surface vegetation. Currently, this integrated approach 
has been applied in studies such as continuous time-series 
LAI inversion and crop yield estimation [101]. However, 
existing research primarily focuses on the integration 
of crop growth models with one-dimensional radiative 
transfer models like PROSAIL, neglecting the impact 
of three-dimensional vegetation structure changes. 
For instance, row-planted crops like corn and cotton 
undergo changes in leaf distribution from row structure to 
uniform as they grow. Therefore, developing integration 
schemes based on three-dimensional computer simulation 
models can enhance the accuracy of LAI and crop yield 
estimations.

4.4.4. Integration of vegetation functional modules
Beyond simulating radiative transfer processes, the 
use of three-dimensional computer simulation models 
for studying vegetation physiological functions is 
becoming more widespread. In addition to integrating 
with leaf-scale models like PROSPECT, LIBERTY, 
and FLUSPECT, models like TRGMEB and ENVI-

met consider photosynthesis and respiration in leaves, 
making it possible to establish relationships between the 
physiological and ecological functions of vegetation and 
remote sensing observations. Duffour et al. [102] analyzed 
the relationship between maximum photosynthetic rate, 
evapotranspiration, and surface temperature. Simon et 
al. [103] simulated the patterns of vegetation transpiration 
rate and leaf temperature with changing solar radiation 
under different urban micrometeorological conditions 
using the ENVI-met model. Incorporating vegetation’s 
physiological functional modules into three-dimensional 
computer simulation models lays an important foundation 
for their application in vegetation ecology research. The 
NOTG model, for instance, simulates not only radiative 
transfer processes but also synchronizes the simulation of 
carbon and nitrogen cycling between vegetation and soil, 
as well as forest growth [104].

4.5. Application expansion
Considering the aforementioned developments and 
trends, three-dimensional computer simulation models 
have significantly improved in terms of computational 
speed, simulation accuracy, and model coupling, meeting 
the requirements of most applications in terms of speed, 
accuracy, and functionality. Compared to existing 
research, the application scope of three-dimensional 
computer simulation models has also expanded. The 
following briefly introduces potential applications in 
remote sensing inversion, validation, and analysis.

To overcome the limitations of inversion using 
single remote sensing data sources, inversion strategies 
based on multi-source data fusion, including fusion and 
inversion of multi-scale, multi-band, multi-angle, and 
multi-temporal observation data, have rapidly developed 
[3]. Three-dimensional computer simulation models can 
simulate complex surface remote sensing observations at 
multiple scales, bands, angles, and times, making them 
valuable tools for multi-source remote sensing data fusion 
and inversion.

With improved computational speed and simulation 
accuracy, three-dimensional computer simulation models 
not only provide reference data to establish relationships 
between model inputs and remote sensing observations 
but also serve as tools for validating forward models and 
inversion algorithms. Additionally, these models can act 
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as scale conversion tools, upscaling ground-based “point” 
measurements to “area” observations at the pixel level for 
validating satellite remote sensing products. Compared 
to existing empirical/semi-empirical scale conversion 
methods, validation methods based on three-dimensional 
computer simulation models have clear physical meanings 
and consider the impacts of three-dimensional surface 
structures and meteorological conditions, emerging as one 
of the important approaches for surface validation.

As analysis tools, three-dimensional computer 
simulation models often focus on the effects of three-
dimensional surface structures on remote sensing 
observation signals (such as BRDF and DBT). With 
the coupling of different modules in these models, their 
simulation capabilities at diurnal and seasonal scales 
are expanded through integration with energy balance 
modules and crop growth models. Integration with 
vegetation functional modules further enhances the 
models’ response mechanisms to meteorological changes. 
Therefore, three-dimensional computer simulation models 
can undertake more research in applications such as crop 
yield estimation, urban heat island analysis, fire warning, 

and drought monitoring in the future.

5. Conclusion
After nearly 40 years of development, three-dimensional 
computer simulation models have made significant 
progress and are widely used in indirect validation, 
analysis, and inversion in remote sensing. This article 
briefly introduced the development and applications of 
three-dimensional computer simulation models. Despite 
limitations such as slow running speed and high memory 
usage, these models are receiving increasing attention 
with the deepening of research on mixed pixels and 
mountainous areas. To meet application needs, three-
dimensional computer simulation models have achieved 
a series of advancements in computational efficiency, 
simulation accuracy, and functional integration. This 
article discussed the progress, applications, and future 
trends of these models, hoping to contribute to addressing 
the question of “how to develop models to better meet 
application needs.”
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