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Abstract: With the rapid growth of electronic product manufacturing, enterprises increasingly face challenges in balancing 
product quality and cost control across multi-stage production processes. Key decisions—such as whether to inspect or 
disassemble spare parts, semi-finished, and finished goods—are interrelated and significantly influence efficiency and quality. 
To address this, we propose an Intelligent Decision Optimization System for Electronic Product Manufacturing Based on Cloud 
Computing. Leveraging the scalability and processing power of cloud platforms, the system integrates simulation-based machine 
learning to optimize inspection and disassembly strategies. Using real production data from a Shenzhen-based electronics 
manufacturer (2011–2014), which includes detailed records of defect rates, production volumes, costs, and inspection actions, 
we simulate workflows and construct a cost analysis model. Results reveal that the optimal strategy is to inspect all spare parts 
while omitting inspection and disassembly for later stages, minimizing overall cost while maintaining stability. This research 
highlights the value of intelligent information systems in modern manufacturing and offers a foundation for future exploration of 
deep learning and multi-objective optimization in quality-cost decision-making.
Keywords: Electronic product manufacturing; Enterprise decision optimization; Enterprise cost control; Cloud Computing

Online publication:

1. Introduction
Amid accelerating global digitalization, electronic products have become indispensable to modern life, fueling rapid 
growth in the electronic manufacturing industry. From smartphones and laptops to smart appliances and wearable devices, 
rising consumer expectations for quality and performance are driving demand, while also posing increasing challenges in 
cost control and product quality assurance. Manufacturing electronic products involves complex procedures and numerous 
precision components, where minor defects can escalate into full product failure. Even with thorough inspections, issues 
during assembly, environmental interference, or human error may still produce non-conforming items [1].

Manufacturers must make a series of interrelated decisions: whether to inspect or rework spare parts, semi-finished 
products, or final goods, and how to manage defect recovery and after-sales returns. These decisions directly affect quality 
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outcomes, production costs, and profitability. To meet these challenges, building a data-driven intelligent decision-making 
system is increasingly essential. Traditional manual experience-based decision-making falls short in handling high-
frequency, high-dimensional production scenarios. In contrast, intelligent systems can integrate production data, quality 
indicators, and market feedback to support dynamic decision-making through modeling and optimization algorithms.

Cloud computing has emerged as a powerful enabler of enterprise-level intelligent decision systems [2]. Its capabilities 
in parallel processing, large-scale storage, real-time analytics, and flexible deployment allow manufacturers to overcome 
computational bottlenecks. Cloud-based systems also integrate seamlessly with core platforms such as MES and ERP, 
supporting resource coordination and decision automation.

To address these issues, this paper proposes an Intelligent Decision Optimization System for Electronic Product 
Manufacturing Based on Cloud Computing. The system focuses on optimizing inspection and disassembly strategies at 
various stages of the production process. The study uses real production data (2011–2014) from a Shenzhen electronics 
manufacturer, covering inspections, defect rates, costs, and disassembly records. The dataset’s rich structure supports 
robust modeling and offers practical insights for optimizing quality and cost trade-offs in electronic product manufacturing.

2. Literature Review
In the field of electronic product manufacturing, decision optimization plays a vital role in controlling costs and ensuring 
product quality. Nelson [3] conducted an in-depth analysis of testing procedures and cost structures, offering a theoretical 
foundation for optimizing testing strategies to reduce expenses while enhancing quality assurance. Similarly, Korshunov 
and Petrushevskaya [4] developed models that correlate production stages with product quality, thereby providing technical 
tools to improve quality control in digital manufacturing environments.

Meiser and Nowak [5, 6] investigated testing and certification processes in the context of new product development, using 
case studies to provide practical guidance. Their work supports enterprises in reducing development risks and improving the 
market competitiveness of electronic products by implementing effective testing and certification protocols at early stages.

Beyond manufacturing, decision-making models in related domains offer relevant insights. Yoo S.-Keun et al. [7] 
developed a cloud computing adoption decision model using AHP and Delphi analysis. They identified key decision 
factors—such as top management support and competitive pressure—as crucial to adoption outcomes, and highlighted 
differences in priority between adopters and providers. In a similar context, Wu et al. [8] examined cloud adoption 
determinants in Chinese e-government departments. Their structural equation modeling revealed varying drivers across 
cloud service models and emphasized the influence of cultural factors such as managerial authority.

Collectively, these studies provide robust theoretical and practical frameworks for manufacturing decision-making. 
However, limitations remain—particularly in comprehensively integrating multiple dynamic factors and adapting to real-
time market fluctuations. Building on this foundation, the present study aims to further explore decision optimization in 
electronic product manufacturing, with a specific focus on the integrated impact of inspection and disassembly strategies 
for spare parts, semi-finished, and finished products on cost efficiency and quality assurance, thereby offering enterprises 
more practical and adaptive optimization solutions.

3. Research hypothesis and model establishment
3.1. Research hypothesis and model establishment
In this study, several assumptions are made to ensure the accuracy and feasibility of the decision optimization model in 
electronic product manufacturing. First, the defective rate of spare parts is assumed to follow a binomial distribution, 
with the sampling process being random and each spare part having an equal probability of being selected [9]. It is further 
assumed that all testing procedures are perfectly accurate, meaning there are no errors or missed inspections. If dismantled 
spare parts have not been previously tested, they will undergo inspection before reuse, and any newly identified defective 
parts will always be replaced with newly tested components. The enterprise aims to produce 500 qualified finished 



 2025 Volume 3, Issue 1

-25-

products for market entry. It is also assumed that dismantling semi-finished products does not damage the individual spare 
parts, and the production process can be repeated without loss. Additionally, the market is assumed to automatically inspect 
finished products upon entry. Any unqualified finished products are returned, resulting in exchange-related losses. In this 
context, the market›s defect judgment follows a Beta distribution, while the number of defective products identified during 
market sampling is expected to follow a binomial distribution [10]. These assumptions provide the statistical and operational 
basis for the subsequent decision-making model and cost-benefit analysis.

3.2. Data processing and simulation of production process
The dataset used in this study originates from a Shenzhen-based electronic manufacturing enterprise and spans four years 
(2011–2014), covering real-world data from component to final product stages. It includes information on inspections, 
disassembly activities, defect rates, production costs, volumes, unit prices, and inspection fees. To ensure data quality, 
missing values (e.g., -99) were removed, and relevant fields were standardized and semantically restructured, resulting in 
a highly discriminative feature matrix suitable for intelligent decision modeling. In simulation, production parameters—
including defect rates, prices, and inspection costs—are organized into a data dictionary. The process models production 
cycles: purchasing spare parts, deciding inspection points, assembling into semi-finished and finished products, and 
applying disassembly or discard strategies. Each cycle continues until 500 qualified units are produced, incorporating 
disassembly and exchange losses into total cost. This framework enables the evaluation of various decision strategies, 
offering practical insights into optimizing cost-efficiency and quality control in electronic manufacturing.

3.3. Cost Model and Theoretical Analysis
According to the simulated production process, the cost model is established, and the cost is calculated as follows

_ cos y z m t nall t s s s s s= + + + +

Among them,  is the total inspection cost,  is the total purchase cost,  is the total assembly cost, is the total exchange loss 
and  is the total disassembly cost.

In order to find the optimal strategy, we traverse all possible production strategies and calculate the total cost under 
each strategy. The concrete steps are as follows

Define strategy space: production strategies include inspection and disassembly decisions of spare parts, semi-finished 
products and finished products. Calculate the total cost: for each strategy, the total cost under each strategy is calculated 
according to the cost model by simulating the process of producing 500 qualified finished products.

Compare total cost: compare the total cost of all strategies and find the strategy with the smallest total cost.
The goal of this paper is to find an optimal strategy and find the optimal decision-making scheme by minimizing the 

total cost, so the objective function is:
min _ cosall t

The established model requires that at least 500 qualified finished products must be produced, and the constraint 
conditions for the number of qualified finished products are:

1 500num ≥

For the disassembly of finished products and semi-finished products, they must be inspected and found to be 
unqualified before disassembly. The constraint conditions of semi-finished products and finished products on the 
inspection and disassembly sequence are as follows:

_ _j jDis sub Insp sub≤ ( 1, 2,3)j∀ =

_ _Dis prod Insp prod≤
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Where,  indicates whether the first semi-finished product is inspected, and the value is 0 or 1, which indicates whether 
the first semi-finished product is disassembled, and the value is 0 or 1. indicates whether the finished product is inspected, 
and the value is 0 or 1,  indicating whether the finished product is disassembled, and the value is 0 or 1.

3.4. Design of Enterprise Production Decision Cloud Platform
To support intelligent decision-making and optimization tasks in the electronic product manufacturing process, this study 
builds a comprehensive system architecture based on cloud computing. The platform encompasses the full lifecycle 
from data acquisition, preprocessing, analysis, to decision optimization. It features high availability, scalability, and fault 
tolerance, making it suitable for complex, multi-stage, and concurrent industrial environments. The system design is 
structured around the following five key technical components:

3.4.1. System Requirement Analysis
At the outset, we conducted an in-depth analysis of the decision-making scenarios in the enterprise›s electronic component 
manufacturing process. The primary system requirements include: (1) support for large-scale historical production data 
storage and high-speed querying; (2) the ability to simulate complex, multi-stage strategy combinations and compute 
associated costs; and (3) interactive and visual feedback mechanisms for optimization results. Furthermore, given the real-
time nature of production, the system must support high concurrency and rapid strategy response.

3.4.2. High System Reliability
To ensure reliable operation in industrial applications, the platform adopts multi-level redundancy mechanisms and disaster 
recovery design. All core computing services are deployed using container orchestration technologies (e.g., Kubernetes 
+ Docker [11]), supporting auto-failover and load balancing. Intermediate results during decision processing are stored in 
object storage services (e.g., OSS) and distributed databases (e.g., HBase [12]) to ensure high data availability. A cloud-
based monitoring system (e.g., Prometheus + Grafana [13]) tracks resource usage, system latency, and task statuses in real 
time, ensuring stable execution of decision workflows.

3.4.3. System Architecture Design
The platform adopts a layered system architecture, structured into five main layers:

Data Layer: Utilizes cloud-based data lake technologies to integrate heterogeneous production data, supporting 
unified modeling and standardized preprocessing for spare parts, semi-finished, and finished products.

Service Layer: Encapsulates modular services including cost modeling, strategy simulation, and algorithm scheduling. 
Services are deployed via microservice architecture to facilitate scalability and maintenance.

Computing Layer: Leverages distributed computing frameworks such as Spark and Flink to execute large-scale 
simulations and machine learning tasks in parallel, significantly enhancing computational efficiency.

Interface Layer: Provides RESTful [14] APIs for integration with enterprise systems like ERP and MES, enabling real-
time bidirectional data flow and system interoperability.

Presentation Layer: Offers web-based dashboards (e.g., built with ECharts [15]) for visualizing simulation results, 
optimal strategies, and sensitivity analyses, enabling interactive decision-making by managers.

3.4.4. System Function Analysis
The core functionality of the platform is divided into four modules:

Strategy Modeling Module: Allows users to define inspection/disassembly strategies at each production stage, set cost 
functions, and specify optimization objectives.

Simulation & Optimization Module: Executes batch simulations of production flows based on input strategy sets, 
evaluating economic outcomes under different defect rate conditions.
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Algorithm Management Module: Integrates various optimization algorithms (e.g., simulated annealing, genetic 
algorithms, reinforcement learning), enabling algorithm tuning and parameter management.

Decision Support Module: Generates real-time optimization reports using evaluation metrics such as F1 Score, 
Precision, and Recall, assisting enterprises in making comprehensive and data-informed decisions.

3.4.5. Cloud Platform Organization Structure
The platform’s organizational structure is designed according to user roles and functional layers, ensuring secure, efficient, 
and coordinated operations:

Platform Administration Role: Oversees resource allocation, access control, system security policies, and maintenance 
of containerized environments.

Data Engineering Role: Manages data ingestion, preprocessing, storage, and quality assurance to ensure reliable input 
for analysis.

Modeling & Analysis Role: Composed of algorithm engineers and domain experts responsible for model construction, 
strategy evaluation, and large-scale simulation.

Business Decision Role: Targeted at enterprise managers and quality control personnel who interpret results through 
visual interfaces and participate in strategic decision-making.

Interface Integration Role: Provides API-based integration with ERP, MES, and other business systems to synchronize 
production plans, order data, and inspection information, thereby establishing a closed-loop intelligent decision framework.

4. Model analysis
According to the calculation results of the established model, combined with the contents in Table 1, it can be known that 
the strategy with the lowest total cost is that all spare parts 1-8 are inspected, semi-finished products 1-3 are not inspected 
or disassembled, and finished products are not inspected or disassembled. Under this strategy, enterprises can reduce costs 
to the maximum extent while meeting the requirements of producing 500 qualified finished products.

Table 1: Optimal inspection scheme for spare parts

step Whether to detect
Spare parts 1 testing Yes
Spare parts 2 testing Yes
Spare parts 3 testing Yes
Spare parts 4 testing Yes
Spare parts 5 testing Yes
Spare parts 6 testing Yes
Spare parts 7 testing Yes
Spare parts 8 testing Yes

Work in progress 1 test No
Work in progress 2 test No
Work in progress 3 test No

Finished product inspection No
Work in progress 1 Disassembly No
Work in progress 2 Disassembly No
Work in progress 3 Disassembly No

Finished product disassembly No
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By analyzing the cost composition under the optimal strategy, we can determine the proportion of each part of the 
cost. In order to complete 500 and 500 finished products, the detailed cost chart is shown in Figure 1. The lowest total 
cost is 62,782 yuan, of which the cost of purchasing spare parts is 37,962 yuan, accounting for 60% of the total cost; The 
assembly cost is 17,280 yuan, accounting for 28% of the total cost; The cost of testing is 5940 yuan, accounting for 9% of 
the total cost; The dismantling cost is 0, accounting for 0% of the total cost; The exchange loss is 1600 yuan, accounting 
for 3% of the total cost.

　　

Figure 1: Cost breakdown and Spare parts demand

Under the optimal strategy, we simulated the production process to analyze the demand for spare parts required to 
produce 500 qualified finished products. The simulation revealed the estimated quantities needed for each spare part: spare 
part 1 (603 units), part 2 (583), part 3 (596), part 4 (600), part 5 (588), part 6 (603), part 7 (587), and part 8 (592). These 
results, illustrated in Figure 12, demonstrate relatively balanced demand across all components and provide a reliable 
reference for procurement planning and inventory optimization in electronic product manufacturing.

To assess the model’s stability, spare parts demand was analyzed through multiple simulated production cycles. Each 
cycle involved decisions on part usage and reordering based on defect rates and testing strategies. Assembly quality and 
costs were evaluated accordingly, incorporating predefined inspection and disassembly strategies. The number of spare 
parts used across simulations showed limited variation. As illustrated in Figure 2, the maximum fluctuation for eight spare 
parts ranged from 5 to 22 units, with fluctuation rates between 0.8% and 3.5%, all below 5%. These results indicate strong 
model stability in spare parts demand across production scenarios.

Figure 2: Changes in spare parts demand
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To sum up, by simulating the production process many times, it is observed that the fluctuation of spare parts demand 
is small, demonstrating that the model achieve stable performance across multiple simulations.     

5. Conclusions and Suggestions
This study presents a cloud-based intelligent decision optimization system tailored for electronic product manufacturing, 
focusing on inspection and disassembly strategies across spare parts, semi-finished, and finished goods. Using real-world 
production data from 2011–2014 and simulation-based machine learning algorithms, the system builds a comprehensive 
cost model and simulates production workflows to identify the most cost-effective strategy. Experimental results show 
that inspecting all spare parts while skipping inspection and disassembly for subsequent stages minimizes total costs and 
achieves the production target of 500 qualified finished goods. In this optimal configuration, spare part purchase costs 
dominate total expenses (~60%), with additional contributions from assembly and inspection. Stability analysis further 
confirms low fluctuation in part demand, supporting the model’s reliability for consistent and risk-averse decision-making.

Built on a scalable cloud computing platform, the system benefits from elastic infrastructure, automated workflows, 
and integration with enterprise systems (ERP/MES), enabling real-time, data-driven decision-making. This underscores the 
value of intelligent information management in enhancing both operational intelligence and production efficiency.

In summary, the proposed system offers a robust strategy for balancing cost and quality in complex manufacturing 
processes and serves as a practical tool for digital transformation in the electronics industry. Future research will explore 
multi-objective optimization (e.g., cost, lead time, quality), integrate external variables like market volatility and supply 
disruptions, and apply advanced methods such as reinforcement learning and graph neural networks to further improve 
adaptability and decision accuracy under real-world uncertainties.
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