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Abstract: Pneumonia is a major global health threat, with diagnosis becoming increasingly complex due to emerging respiratory 
viruses such as SARS-CoV-2. This study explores the use of deep learning models—VGG16, MobileNet, and ResNet152—for 
classifying chest X-ray images into three categories: COVID-19, viral pneumonia, and normal. Models were fine-tuned using 
transfer learning on a retrospective dataset collected between 2010 and 2021 at a medical center in Guangzhou, China. The 
dataset contains 5,863 X-ray images (JPEG format), obtained from routine clinical care categorized into pneumonia and normal 
classes, organized into train, test, and validation folders. Data augmentation techniques, including rotation, scaling, translation, 
shearing, and flipping, were applied to improve model robustness. ResNet152 achieved the highest accuracy (89%) and showed 
perfect precision and recall in detecting COVID-19 and viral pneumonia cases, though its performance on normal cases 
was lower. The superior performance of ResNet152 is attributed to its deep residual learning architecture, which enables the 
extraction of complex image features while mitigating gradient vanishing. These findings demonstrate the potential of AI-driven 
systems in supporting pneumonia diagnosis and emphasize the importance of using larger, balanced datasets for improving 
diagnostic performance in real-world clinical settings, particularly in low-resource environments.
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1. Introduction
Pneumonia is an acute respiratory infection, mostly caused by viruses or bacteria. It can cause mild to life-threatening 
illness in people of all ages, but it is the largest single infectious cause of child mortality worldwide [1]. In recent years, the 
situation of pneumonia prevention and control has become more critical with the prevalence of several respiratory viruses, 
including SARS, H7N9, MERS and SARS-CoV-2 [2]. Medical imaging, especially chest X-ray, is an important tool to 
assist in the diagnosis of pneumonia [3]. Doctors can observe typical lesions in the lungs, such as map-like changes, gross 
glass shadows, and inflammatory infiltration of the lung parenchyma, through imaging, and these features help to quickly 
screen and diagnose patients with pneumonia. However, physicians referring to lung X-rays to screen for pneumonia may 
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miss and misdiagnose the disease for a variety of reasons. Therefore, there is an urgent need for an accurate CAD method 
to detect pneumonia.

With the development of deep learning techniques, deep learning-based image classification tasks have shown great 
potential in the field of medical image analysis, especially the application of convolutional neural networks (CNNs) has 
made significant progress [4]. Some studies have analyzed binary classification of normal and pneumonia images, while 
others have investigated multi-class classification of normal images and different types of pneumonia, including viral and 
bacterial pneumonia infections [5].

VGG16, proposed by the Vision Geometry Group of the University of Oxford in 2014, is a deep convolutional neural 
network that achieved significant results in the ImageNet image classification task [6]. MobileNet, a lightweight CNN 
network proposed by the Google team in 2017, focuses on mobile or embedded devices [7]. ResNet152, a deep residual 
network proposed by Microsoft Research, introduces residual modules and bottleneck structures to enable the model to 
effectively learn image features at a deeper level [8].

ResNet152 excels in pneumonia diagnosis due to its 152-layer deep residual structure, which effectively captures 
complex features, prevents gradient vanishing, and boosts diagnostic accuracy and generalization. Unlike VGG16, 
which is parameter-heavy, inefficient, and prone to overfitting, or MobileNet, which is lightweight but less accurate and 
has limited feature extraction, our proposed ResNet152-based medical image segmentation framework aims to enhance 
pneumonia species recognition accuracy and efficiency. It leverages ResNet152’s deep residual learning to extract complex 
image features and optimizes performance through network fine-tuning.

2. Literature Review
Based on recent advancements and comprehensive scholarly reviews, convolutional neural networks (CNNs) and transfer 
learning have emerged as pivotal tools in the field of medical imaging. CNNs possess powerful capabilities in extracting 
spatial hierarchies from image data, making them suitable for tasks like classification, detection, and segmentation. 
Transfer learning further enhances performance by leveraging pre-trained models, thus reducing the reliance on large 
annotated datasets.

Salehi et al. [9] provided an influential review emphasizing the advantages of CNNs and transfer learning in medical 
imaging. They noted that CNNs, particularly when combined with transfer learning strategies, can deliver superior 
diagnostic accuracy. However, they also highlighted key challenges such as small dataset sizes, model interpretability, and 
domain generalization. Similarly, Kundu et al. [10] introduced a CAD system using deep transfer learning for pneumonia 
detection via X-ray images. Their model achieved outstanding sensitivity and accuracy on public datasets like Kermany 
and RSNA, illustrating the clinical potential of pre-trained deep models.

To address temporal continuity in image sequences, Bai et al. [11] proposed integrating Fully Convolutional 
Networks (FCNs) with Recurrent Neural Networks (RNNs), significantly improving performance in segmenting aortic 
MR sequences. Meanwhile, Jha et al. [12] proposed DoubleU-Net—two stacked U-Net architectures—which enhanced 
contextual feature capture and outperformed traditional U-Net models.

Further advancing model efficiency, Li Gang et al. [13] introduced a MobileNetV1-based approach enhanced with 
Multi-Scale Feature Fusion (MSFF) and dilated convolutions, achieving over 99% accuracy in CT-based honeycomb lung 
recognition. In brain imaging, Roy et al. [14] used ResNet-152 to classify Alzheimer’s disease, reaching 99.30% binary and 
98.79% quaternary classification accuracy. Beyond medical imaging, CNN architectures have demonstrated utility across 
domains. Yang et al. [15] applied an improved VGG16 to classify 12 peanut species, achieving a 96.7% average accuracy. 

These works collectively illustrate that CNNs and their improved variants, when paired with transfer learning or 
attention mechanisms, not only elevate model performance in complex image tasks but also facilitate their practical 
deployment in medical diagnostics, agriculture, and industrial inspection.
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3. Pneumonia classification and recognition model
3.1. Transfer Learning
Transfer learning utilizes pre-trained models from a source task to improve performance on a target task, enhancing 
generalization while reducing computational cost. In medical imaging, it has proven effective—for example, Chen et 
al.’s Med3D network achieved superior Dice scores and classification accuracy. In lung X-ray classification, the process 
involves preprocessing images, using a pre-trained CNN, freezing most layers, replacing fully connected layers, and fine-
tuning new layers with a low learning rate. This strategy enables efficient adaptation and improved diagnostic accuracy 
with limited data.

3.2. Mathematical Principles of Three Models
Convolution is one of the core operations of CNN. Assuming that the input is a 2D matrix (image), the convolution 
operation slides through each region of the input step by step with a small weight matrix (convolution kernel), weighting 
and summing the localizations and outputting the feature map. 

The role of the maximum pooling layer is to downsample the feature map to reduce the spatial dimensions of the data 
while retaining the most important feature information. Maximum pooling typically uses a 2×2 window and slides in the 
stride of 2. This halves the size of the input feature map and reduces subsequent calculations. 

VGG16 has 13 convolutional layers. After convolutional layers, three fully connected layers lead to the model’s 
predictions. Stacking small kernels increases depth and nonlinearity, reducing parameters and improving feature extraction 
and classification [6].

VGG16 is suitable for tasks such as image classification, target detection, and image segmentation, and is particularly 
good at migration learning, which enables it to quickly adapt to new tasks through fine-tuning. However, VGG16 has more 
parameters, resulting in a higher computational cost, but it is still a reliable choice.

MobileNet is based on Depthwise Separable Convolution, which decomposes traditional convolution into two steps: 
depth convolution and pointwise convolution, significantly reducing the amount of computation and model parameters. 

Depthwise Convolution: Convolution operation is performed independently for each channel of the input feature map, 
without mixing information across channels. The size of the input feature map and the output feature map remains the same.

Pointwise Convolution: uses a 1×1 convolution kernel to linearly combine the outputs of deep convolution to increase 
the number of channels.

The MobileNetV1 starts from the input layer. It enters a stack of multiple depth-separable convolutional layers, 
gradually increasing the number of channels and reducing the spatial dimensionality. Finally, the network reduces the 
feature map to a one-dimensional vector through a global average pooling layer and then outputs the classification results 
through a fully connected layer [7].

Table 1. All layers of MobileNetV1 with specific parameters.

Layer Type Parameters Input Output Activate

1 Convolutional 3×3, 32 filters, stride=2, padding=same 224×224×3 112×112×32 ReLU

2 Depthwise + Pointwise
Depthwise: 3×3, stride=1
Pointwise: 1×1, 64 filters

112×112×32 112×112×64 ReLU

3 Depthwise + Pointwise
Depthwise: 3×3, stride=2
Pointwise: 1×1, 128 filters

112×112×64 56×56×128 ReLU

4 Depthwise + Pointwise
Depthwise: 3×3, stride=1
Pointwise: 1×1, 128 filters

56×56×128 56×56×128 ReLU

5 Depthwise + Pointwise
Depthwise: 3×3, stride=2
Pointwise: 1×1, 256 filters

56×56×128 28×28×256 ReLU
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Table 1 (Continued)

Layer Type Parameters Input Output Activate

6 Depthwise + Pointwise
Depthwise: 3×3, stride=1
Pointwise: 1×1, 256 filters

28×28×256 28×28×256 ReLU

7 Depthwise + Pointwise
Depthwise: 3×3, stride=2
Pointwise: 1×1, 512 filters

28×28×256 14×14×512 ReLU

8-12 Depthwise + Pointwise 
Depthwise: 3×3, stride=1
Pointwise: 1×1, 512 filters

14×14×512 14×14×512 ReLU

13 Depthwise + Pointwise
Depthwise: 3×3, stride=2

Pointwise: 1×1, 1024 filters
14×14×512 7×7×1024 ReLU

14 Depthwise + Pointwise
Depthwise: 3×3, stride=2

Pointwise: 1×1, 1024 filters
7×7×1024 4×4×1024 ReLU

15 Average Pooling 4×4, stride=4 4×4×1024 1×1×1024 -

16 Fully Connected 1000 units 1×1×1024 1000 Softmax

MobileNet offers high performance with low latency and computational cost, making it ideal for tasks like image 
classification, object detection, and semantic segmentation. Though its accuracy might be slightly lower than larger 
models, its design excels in mobile and embedded applications.

The mathematics of ResNet152 is based on residual learning: assuming that the input is  and the output is , ResNet 
enables the network to learn the difference between the input and the output more efficiently by learning the residual 
function . 

ResNet152 is designed based on the residual learning framework and aims to solve the problem of gradient vanishing 
and gradient explosion in deep network training by introducing skip connections to ensure the training efficiency of the 
network.

ResNet152 consists of 152 layers, starting with a 7×7 convolutional layer with stride 2 for downsampling. It is 
followed by four stages with multiple residual units. Feature map sizes are halved and channel numbers increased in each 
stage using stride-2 convolutions. The network ends with a global average pooling layer and a fully connected layer for 
classification [8].

Table 2. All layers of Resnet152 with specific parameters.

LAYER TYPE PARAMETERS INPUT OUTPUT ACTIVATE

1 Convolutional 7×7, 64 filters, stride=2, padding=same 224×224×3 112×112×64 2

2 Max Pooling 3×3, stride=2, padding=same 112×112×64 56×56×64 2

3-4 Residual Block (×3) 3×3, 64 filters, stride=1 56×56×64 56×56×64 1

5-14 Residual Block (×4) 3×3, 128 filters, stride=2 (first block) 56×56×64 28×28×128 2/1

15-34 Residual Block (×6) 3×3, 256 filters, stride=2 (first block) 28×28×128 14×14×256 2/1

35-50 Residual Block (×3) 3×3, 512 filters, stride=2 (first block) 14×14×256 7×7×512 2/1

51 Average Pooling 7×7, stride=1 7×7×512 1×1×512 1

52 Fully Connected 1000 units 1×1×512 1000 -

ResNet152 has a wide range of applicability and is particularly suitable for image classification tasks that require 
high accuracy, such as classification on large-scale image datasets or as a feature extractor for target detection and 
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semantic segmentation.

4. Results
4.1. Dataset
The chest X-ray dataset comprises 5,863 JPEG images collected from a Guangzhou medical center between 2010 and 
2021 as part of routine clinical care. Images are categorized into pneumonia and normal classes and organized into train, 
test, and validation folders. To improve data quality, preprocessing included resizing to (224, 224, 3), normalization, 
denoising, label encoding, and data augmentation techniques such as rotation, scaling, shifting, shearing, and flipping, 
ensuring enhanced image quality and robustness for pneumonia classification tasks.

　

Figure 1. Sample Example of Dataset

4.2. Comparison and Analysis of Results
4.2.1. VGG16
The VGG16 model performs well on the COVID category, but the recognition ability on the Normal and Viral Pneumonia 
categories needs to be improved, especially the recall of the Viral Pneumonia category is low. The overall accuracy is 80%; 
however, from the loss and accuracy curves, the model starts to show a slight overfitting phenomenon after about the 10th 
epoch, the training loss continues to decrease while the validation loss starts to fluctuate and increase, the training accuracy 
increases while the validation accuracy fluctuates.

Figure 2. Training and validation loss of VGG16. Figure 3. Training accuracy and validation accuracy of VGG16.

The figure 2 presents a graph illustrating the concept of overfitting during model training. The x-axis represents the 
epoch, which refers to the number of times the model has gone through the entire training data. The y-axis represents loss, 
a measure of how much error the model makes in its predictions. The blue curve, labeled validation loss, decreases steadily 
as the number of training steps increases. This indicates that the model is improving on the data it has seen before. The red 
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curve, labeled training loss, initially follows a similar downward trend but starts increasing after about 15.0 epochs. This 
suggests that the model is no longer generalizing well to unseen data. This figure demonstrates a key challenge in machine 
learning: the balance between learning useful patterns and overfitting to specific examples. Proper techniques, such as 
regularization, can help prevent overfitting and improve the model’s real-world performance.

The figure 3 presents a graph illustrating the improvement of model performance during training. The x-axis 
represents the epoch, which refers to the number of times the model has gone through the entire training dataset. The 
y-axis represents accuracy, a measure of how often the model makes correct predictions. The blue curve, labeled validation 
accuracy, increases steadily as the number of training steps increases. This indicates that the model is becoming better at 
making predictions on unseen data. The red curve, labeled training accuracy, also follows an upward trend and typically 
stays above the validation accuracy throughout training. This suggests that the model is effectively learning patterns in the 
training data while maintaining good generalization. This figure demonstrates a desirable outcome in machine learning: 
continuous improvement in both training and validation accuracy. Proper techniques, such as careful model tuning and 
diverse training data, can help sustain this positive trend and lead to better model performance in real-world applications.

4.2.2. MobileNet
The MobileNet model performs well on the COVID category with a precision of 1.00, but has low recall on the Normal 
and Viral Pneumonia categories of 0.50, respectively, resulting in overall F1 scores and accuracies of 0.65 and 0.65, 
respectively, suggesting that the model has some difficulty recognizing these categories. Although the training loss and 
validation loss decreased with increasing epoch and both the training accuracy and validation accuracy increased, the 
validation accuracy fluctuated and was relatively low.

4.2.3. Resnet152
The ResNet152 model showed good learning ability during the training process, with the training loss continuing to 
decrease and the training accuracy gradually increasing and approaching 1.0. The validation accuracy also fluctuated and 
tended to decrease after the initial rapid increase, which indicates that the model may be starting to overfit. The model 
performs well on the COVID and Viral Pneumonia categories, but there is some misclassification on the normal category. 
In general, the overall performance of the model is good.  

Figure 4. Training and validation loss of Resnet152. Figure 5. Training accuracy and validation accuracy of Resnet152.

All three models, VGG16, MobileNet and ResNet152, performed well on the COVID category, but there were 
differences in performance on the Normal and Viral Pneumonia categories. In contrast, the ResNet152 model performs 
better on all categories, especially achieving high precision and recall on the COVID and Viral Pneumonia categories, with 
an overall accuracy of 89%, showing better classification performance and generalization ability.
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Table 3. Test results of VGG16 and MobileNet and Resnet152.

VGG16 Precision Recall F1-score Support

Covid 0.93 1.00 0.96 26

Normal 0.68 0.85 0.76 20

Viral Pneumonia 0.77 0.50 0.61 20

Accuracy 0.80 66

Macro avg 0.79 0.78 0.77 66

Weighted avg 0.80 0.80 0.79 66

MobileNet 

Covid 1.00 0.50 0.67 26

Normal 0.83 0.50 0.62 20

Viral Pneumonia 0.49 1.00 0.66 20

Accuracy 0.65 66

Macro avg 0.77 0.67 0.65 66

Weighted avg 0.79 0.65 0.65 66

Resnet152

Covid 1.00 1.00 1.00 26

Normal 0.74 1.00 0.85 20

Viral Pneumonia 1.00 0.65 0.79 20

Accuracy 66

Macro avg 0.91 0.88 0.88 66

Weighted avg 0.92 0.89 0.89 66

5. Conclusions
This study systematically compared three deep learning models—VGG16, MobileNet, and ResNet152—for multi-class 
pneumonia classification using chest X-ray images. Experimental results demonstrate that ResNet152 achieved superior 
performance, with an overall accuracy of 89%. It attained perfect precision and recall (100%) in detecting COVID-19 
and viral pneumonia, underscoring its strong diagnostic capability. This performance is attributed to its deep residual 
architecture, which effectively captures hierarchical features and mitigates gradient vanishing. However, classification 
performance for normal samples was suboptimal, with ResNet152 achieving only 74% accuracy, highlighting the 
challenge in distinguishing normal from pathological cases.

The study confirms that deep residual networks like ResNet152 are well-suited for complex medical imaging tasks 
and provides a benchmark framework for developing automated diagnostic tools to assist radiologists. Moreover, the 
approach can be extended to other similar tasks such as tuberculosis or lung cancer detection, accelerating AI integration 
into healthcare applications.

Despite the significant findings of this study, several limitations remain. First, the model relies on a relatively 
small, single-center, and retrospective dataset, which may introduce sampling bias and limit the generalizability of the 
results. Additionally, the presence of class imbalance—particularly underrepresentation of certain categories like viral 
pneumonia—likely contributed to the uneven performance across classification tasks. To address these issues, future 
research should consider incorporating large-scale, multi-center, and more balanced datasets to validate the model and 
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enhance its robustness across diverse clinical settings. Moreover, the development of model interpretability techniques and 
lightweight network architectures will be crucial for deploying deep learning models in real-time, resource-constrained 
clinical environments, ensuring both performance and practicality in real-world applications.
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