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Abstract: Pneumonia is a major global health threat, with diagnosis becoming increasingly complex due to emerging respiratory
viruses such as SARS-CoV-2. This study explores the use of deep learning models—VGG16, MobileNet, and ResNet152—for
classifying chest X-ray images into three categories: COVID-19, viral pneumonia, and normal. Models were fine-tuned using
transfer learning on a retrospective dataset collected between 2010 and 2021 at a medical center in Guangzhou, China. The
dataset contains 5,863 X-ray images (JPEG format), obtained from routine clinical care categorized into pneumonia and normal
classes, organized into train, test, and validation folders. Data augmentation techniques, including rotation, scaling, translation,
shearing, and flipping, were applied to improve model robustness. ResNet152 achieved the highest accuracy (89%) and showed
perfect precision and recall in detecting COVID-19 and viral pneumonia cases, though its performance on normal cases
was lower. The superior performance of ResNet152 is attributed to its deep residual learning architecture, which enables the
extraction of complex image features while mitigating gradient vanishing. These findings demonstrate the potential of Al-driven
systems in supporting pneumonia diagnosis and emphasize the importance of using larger, balanced datasets for improving
diagnostic performance in real-world clinical settings, particularly in low-resource environments.
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1. Introduction

Pneumonia is an acute respiratory infection, mostly caused by viruses or bacteria. It can cause mild to life-threatening
illness in people of all ages, but it is the largest single infectious cause of child mortality worldwide . In recent years, the
situation of pneumonia prevention and control has become more critical with the prevalence of several respiratory viruses,
including SARS, H7N9, MERS and SARS-CoV-2 . Medical imaging, especially chest X-ray, is an important tool to
assist in the diagnosis of pneumonia"'. Doctors can observe typical lesions in the lungs, such as map-like changes, gross
glass shadows, and inflammatory infiltration of the lung parenchyma, through imaging, and these features help to quickly
screen and diagnose patients with pneumonia. However, physicians referring to lung X-rays to screen for pneumonia may
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miss and misdiagnose the disease for a variety of reasons. Therefore, there is an urgent need for an accurate CAD method
to detect pneumonia.

With the development of deep learning techniques, deep learning-based image classification tasks have shown great
potential in the field of medical image analysis, especially the application of convolutional neural networks (CNNs) has
made significant progress . Some studies have analyzed binary classification of normal and pneumonia images, while
others have investigated multi-class classification of normal images and different types of pneumonia, including viral and
bacterial pneumonia infections .

VGG16, proposed by the Vision Geometry Group of the University of Oxford in 2014, is a deep convolutional neural
network that achieved significant results in the ImageNet image classification task ”’. MobileNet, a lightweight CNN
network proposed by the Google team in 2017, focuses on mobile or embedded devices . ResNet152, a deep residual
network proposed by Microsoft Research, introduces residual modules and bottleneck structures to enable the model to
effectively learn image features at a deeper level ™.

ResNet152 excels in pneumonia diagnosis due to its 152-layer deep residual structure, which effectively captures
complex features, prevents gradient vanishing, and boosts diagnostic accuracy and generalization. Unlike VGG16,
which is parameter-heavy, inefficient, and prone to overfitting, or MobileNet, which is lightweight but less accurate and
has limited feature extraction, our proposed ResNetl152-based medical image segmentation framework aims to enhance
pneumonia species recognition accuracy and efficiency. It leverages ResNet152’s deep residual learning to extract complex

image features and optimizes performance through network fine-tuning.

2. Literature Review

Based on recent advancements and comprehensive scholarly reviews, convolutional neural networks (CNNs) and transfer
learning have emerged as pivotal tools in the field of medical imaging. CNNs possess powerful capabilities in extracting
spatial hierarchies from image data, making them suitable for tasks like classification, detection, and segmentation.
Transfer learning further enhances performance by leveraging pre-trained models, thus reducing the reliance on large
annotated datasets.

Salehi et al."” provided an influential review emphasizing the advantages of CNNs and transfer learning in medical
imaging. They noted that CNNs, particularly when combined with transfer learning strategies, can deliver superior
diagnostic accuracy. However, they also highlighted key challenges such as small dataset sizes, model interpretability, and
domain generalization. Similarly, Kundu et al. " introduced a CAD system using deep transfer learning for pneumonia
detection via X-ray images. Their model achieved outstanding sensitivity and accuracy on public datasets like Kermany
and RSNA, illustrating the clinical potential of pre-trained deep models.

To address temporal continuity in image sequences, Bai et al. "'’ proposed integrating Fully Convolutional
Networks (FCNs) with Recurrent Neural Networks (RNNs), significantly improving performance in segmenting aortic

MR sequences. Meanwhile, Jha et al. !'

proposed DoubleU-Net—two stacked U-Net architectures—which enhanced
contextual feature capture and outperformed traditional U-Net models.

Further advancing model efficiency, Li Gang et al. " introduced a MobileNetV 1-based approach enhanced with
Multi-Scale Feature Fusion (MSFF) and dilated convolutions, achieving over 99% accuracy in CT-based honeycomb lung

recognition. In brain imaging, Roy et al.!""

used ResNet-152 to classify Alzheimer’s disease, reaching 99.30% binary and
98.79% quaternary classification accuracy. Beyond medical imaging, CNN architectures have demonstrated utility across
domains. Yang et al. " applied an improved VGG16 to classify 12 peanut species, achieving a 96.7% average accuracy.
These works collectively illustrate that CNNs and their improved variants, when paired with transfer learning or
attention mechanisms, not only elevate model performance in complex image tasks but also facilitate their practical

deployment in medical diagnostics, agriculture, and industrial inspection.
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3. Pneumonia classification and recognition model

3.1. Transfer Learning

Transfer learning utilizes pre-trained models from a source task to improve performance on a target task, enhancing
generalization while reducing computational cost. In medical imaging, it has proven effective—for example, Chen et
al.’s Med3D network achieved superior Dice scores and classification accuracy. In lung X-ray classification, the process
involves preprocessing images, using a pre-trained CNN, freezing most layers, replacing fully connected layers, and fine-
tuning new layers with a low learning rate. This strategy enables efficient adaptation and improved diagnostic accuracy
with limited data.

3.2. Mathematical Principles of Three Models

Convolution is one of the core operations of CNN. Assuming that the input is a 2D matrix (image), the convolution
operation slides through each region of the input step by step with a small weight matrix (convolution kernel), weighting
and summing the localizations and outputting the feature map.

The role of the maximum pooling layer is to downsample the feature map to reduce the spatial dimensions of the data
while retaining the most important feature information. Maximum pooling typically uses a 2x2 window and slides in the
stride of 2. This halves the size of the input feature map and reduces subsequent calculations.

VGG16 has 13 convolutional layers. After convolutional layers, three fully connected layers lead to the model’s
predictions. Stacking small kernels increases depth and nonlinearity, reducing parameters and improving feature extraction
and classification "

VGG16 is suitable for tasks such as image classification, target detection, and image segmentation, and is particularly
good at migration learning, which enables it to quickly adapt to new tasks through fine-tuning. However, VGG16 has more
parameters, resulting in a higher computational cost, but it is still a reliable choice.

MobileNet is based on Depthwise Separable Convolution, which decomposes traditional convolution into two steps:
depth convolution and pointwise convolution, significantly reducing the amount of computation and model parameters.

Depthwise Convolution: Convolution operation is performed independently for each channel of the input feature map,
without mixing information across channels. The size of the input feature map and the output feature map remains the same.

Pointwise Convolution: uses a 1x1 convolution kernel to linearly combine the outputs of deep convolution to increase
the number of channels.

The MobileNetV1 starts from the input layer. It enters a stack of multiple depth-separable convolutional layers,
gradually increasing the number of channels and reducing the spatial dimensionality. Finally, the network reduces the
feature map to a one-dimensional vector through a global average pooling layer and then outputs the classification results
through a fully connected layer "’

Table 1. All layers of MobileNetV1 with specific parameters.

Layer Type Parameters Input Output Activate
1 Convolutional 3x3, 32 filters, stride=2, padding=same 224x224x3 112%112x%32 ReLU
Depthwise: 3x3, stride=1
2 Depthwise + Pointwise cprwiSe: 575, stice 112x112x32  112x112x64  ReLU

Pointwise: 1x1, 64 filters

Depthwise: 3x3, stride=2

b

3 Depthwise + Pointwise Pointwise: 1x1, 128 filters 112x112x64 56x56x128 ReLU
Depthwise: 3x3, stride=1

4  Depthwise + Pointwise eptinwise: 765, srice 56%56x128  56x56x128  ReLU
Pointwise: 1x1, 128 filters
Depthwise: 3x3, stride=2

5 Depthwise + Pointwise epthwise: 5%, stride 56x56x128  28x28x256  ReLU

Pointwise: 1x1, 256 filters
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Table 1 (Continued)

Layer Type Parameters Input Output Activate

Depthwise: 3x3, stride=1

Pointwise: 1x1, 256 filters 28x28x236 28x28x236 RelLU

6 Depthwise + Pointwise
Depthwise: 3x3, stride=2

28%28x%2 14x14x512  ReL
Pointwise: 1x1, 512 filters 8x28%256 x14x5 LU

7 Depthwise + Pointwise
Depthwise: 3x3, stride=1

14x14x512 14x14x512 ReL
Pointwise: 1x1, 512 filters XS XS eLU

8-12 Depthwise + Pointwise

Depthwise: 3x3, stride=2

<o + Pointwi
13 Depthwise + Pointwise Pointwise: 1x1, 1024 filters 14x14x512 7x7x1024 ReLU
. L. Depthwise: 3x3, stride=2
14 Depths + Point x7x1024 4x4%1024 RelL
cptiwise T Foltwise Pointwise: 1x1, 1024 filters 7710 0 LU
15 Average Pooling 4x4, stride=4 4x4x1024 1x1x1024 -
16 Fully Connected 1000 units 1x1x1024 1000 Softmax

MobileNet offers high performance with low latency and computational cost, making it ideal for tasks like image
classification, object detection, and semantic segmentation. Though its accuracy might be slightly lower than larger
models, its design excels in mobile and embedded applications.

The mathematics of ResNet152 is based on residual learning: assuming that the input is and the output is , ResNet
enables the network to learn the difference between the input and the output more efficiently by learning the residual
function .

ResNet152 is designed based on the residual learning framework and aims to solve the problem of gradient vanishing
and gradient explosion in deep network training by introducing skip connections to ensure the training efficiency of the
network.

ResNet152 consists of 152 layers, starting with a 7x7 convolutional layer with stride 2 for downsampling. It is
followed by four stages with multiple residual units. Feature map sizes are halved and channel numbers increased in each
stage using stride-2 convolutions. The network ends with a global average pooling layer and a fully connected layer for
classification .

Table 2. All layers of Resnet152 with specific parameters.

LAYER TYPE PARAMETERS INPUT OUTPUT ACTIVATE
1 Convolutional 7%7, 64 filters, stride=2, padding=same 224%224x3 112x112x64 2
2 Max Pooling 3x3, stride=2, padding=same 112x112x64 56x56x64 2
3-4 Residual Block (%3) 3x3, 64 filters, stride=1 56x56x64 56x56x64 1
5-14 Residual Block (x4) 3x3, 128 filters, stride=2 (first block) 56x56x64 28%28x128 2/1
15-34 Residual Block (%6) 3x3, 256 filters, stride=2 (first block) 28%28x128 14x14%256 2/1
35-50 Residual Block (%3) 3x3, 512 filters, stride=2 (first block) 14x14x256 TxTx512 2/1
51 Average Pooling 7x7, stride=1 7x7x512 1x1x512 1
52 Fully Connected 1000 units 1x1x512 1000 -

ResNet152 has a wide range of applicability and is particularly suitable for image classification tasks that require
high accuracy, such as classification on large-scale image datasets or as a feature extractor for target detection and
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semantic segmentation.

4. Results

4.1. Dataset

The chest X-ray dataset comprises 5,863 JPEG images collected from a Guangzhou medical center between 2010 and
2021 as part of routine clinical care. Images are categorized into pneumonia and normal classes and organized into train,
test, and validation folders. To improve data quality, preprocessing included resizing to (224, 224, 3), normalization,
denoising, label encoding, and data augmentation techniques such as rotation, scaling, shifting, shearing, and flipping,
ensuring enhanced image quality and robustness for pneumonia classification tasks.

Figure 1. Sample Example of Dataset

4.2. Comparison and Analysis of Results

4.2.1. VGGI16

The VGG16 model performs well on the COVID category, but the recognition ability on the Normal and Viral Pneumonia
categories needs to be improved, especially the recall of the Viral Pneumonia category is low. The overall accuracy is 80%;
however, from the loss and accuracy curves, the model starts to show a slight overfitting phenomenon after about the 10th
epoch, the training loss continues to decrease while the validation loss starts to fluctuate and increase, the training accuracy
increases while the validation accuracy fluctuates.

Training Loss and Validation Loss Training Accuracy and Validation Accuracy
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Figure 2. Training and validation loss of VGG16. Figure 3. Training accuracy and validation accuracy of VGG16.

The figure 2 presents a graph illustrating the concept of overfitting during model training. The x-axis represents the
epoch, which refers to the number of times the model has gone through the entire training data. The y-axis represents loss,
a measure of how much error the model makes in its predictions. The blue curve, labeled validation loss, decreases steadily
as the number of training steps increases. This indicates that the model is improving on the data it has seen before. The red
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curve, labeled training loss, initially follows a similar downward trend but starts increasing after about 15.0 epochs. This
suggests that the model is no longer generalizing well to unseen data. This figure demonstrates a key challenge in machine
learning: the balance between learning useful patterns and overfitting to specific examples. Proper techniques, such as
regularization, can help prevent overfitting and improve the model’s real-world performance.

The figure 3 presents a graph illustrating the improvement of model performance during training. The x-axis
represents the epoch, which refers to the number of times the model has gone through the entire training dataset. The
y-axis represents accuracy, a measure of how often the model makes correct predictions. The blue curve, labeled validation
accuracy, increases steadily as the number of training steps increases. This indicates that the model is becoming better at
making predictions on unseen data. The red curve, labeled training accuracy, also follows an upward trend and typically
stays above the validation accuracy throughout training. This suggests that the model is effectively learning patterns in the
training data while maintaining good generalization. This figure demonstrates a desirable outcome in machine learning:
continuous improvement in both training and validation accuracy. Proper techniques, such as careful model tuning and
diverse training data, can help sustain this positive trend and lead to better model performance in real-world applications.

4.2.2. MobileNet

The MobileNet model performs well on the COVID category with a precision of 1.00, but has low recall on the Normal
and Viral Pneumonia categories of 0.50, respectively, resulting in overall F1 scores and accuracies of 0.65 and 0.65,
respectively, suggesting that the model has some difficulty recognizing these categories. Although the training loss and
validation loss decreased with increasing epoch and both the training accuracy and validation accuracy increased, the
validation accuracy fluctuated and was relatively low.

4.2.3. Resnet152

The ResNet152 model showed good learning ability during the training process, with the training loss continuing to
decrease and the training accuracy gradually increasing and approaching 1.0. The validation accuracy also fluctuated and
tended to decrease after the initial rapid increase, which indicates that the model may be starting to overfit. The model
performs well on the COVID and Viral Pneumonia categories, but there is some misclassification on the normal category.

In general, the overall performance of the model is good.
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Figure 4. Training and validation loss of Resnet152. Figure 5. Training accuracy and validation accuracy of Resnet152.

All three models, VGG16, MobileNet and ResNet152, performed well on the COVID category, but there were
differences in performance on the Normal and Viral Pneumonia categories. In contrast, the ResNet152 model performs
better on all categories, especially achieving high precision and recall on the COVID and Viral Pneumonia categories, with
an overall accuracy of 89%, showing better classification performance and generalization ability.
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Table 3. Test results of VGG16 and MobileNet and Resnet152.

VGG16 Precision Recall F1-score Support
Covid 0.93 1.00 0.96 26
Normal 0.68 0.85 0.76 20
Viral Pneumonia 0.77 0.50 0.61 20
Accuracy 0.80 66
Macro avg 0.79 0.78 0.77 66
Weighted avg 0.80 0.80 0.79 66
MobileNet
Covid 1.00 0.50 0.67 26
Normal 0.83 0.50 0.62 20
Viral Pneumonia 0.49 1.00 0.66 20
Accuracy 0.65 66
Macro avg 0.77 0.67 0.65 66
Weighted avg 0.79 0.65 0.65 66
Resnet152
Covid 1.00 1.00 1.00 26
Normal 0.74 1.00 0.85 20
Viral Pneumonia 1.00 0.65 0.79 20
Accuracy 66
Macro avg 0.91 0.88 0.88 66
Weighted avg 0.92 0.89 0.89 66

5. Conclusions

This study systematically compared three deep learning models—VGG16, MobileNet, and ResNet152—for multi-class
pneumonia classification using chest X-ray images. Experimental results demonstrate that ResNet152 achieved superior
performance, with an overall accuracy of 89%. It attained perfect precision and recall (100%) in detecting COVID-19
and viral pneumonia, underscoring its strong diagnostic capability. This performance is attributed to its deep residual
architecture, which effectively captures hierarchical features and mitigates gradient vanishing. However, classification
performance for normal samples was suboptimal, with ResNet152 achieving only 74% accuracy, highlighting the
challenge in distinguishing normal from pathological cases.

The study confirms that deep residual networks like ResNet152 are well-suited for complex medical imaging tasks
and provides a benchmark framework for developing automated diagnostic tools to assist radiologists. Moreover, the
approach can be extended to other similar tasks such as tuberculosis or lung cancer detection, accelerating Al integration
into healthcare applications.

Despite the significant findings of this study, several limitations remain. First, the model relies on a relatively
small, single-center, and retrospective dataset, which may introduce sampling bias and limit the generalizability of the
results. Additionally, the presence of class imbalance—particularly underrepresentation of certain categories like viral
pneumonia—Ilikely contributed to the uneven performance across classification tasks. To address these issues, future
research should consider incorporating large-scale, multi-center, and more balanced datasets to validate the model and
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enhance its robustness across diverse clinical settings. Moreover, the development of model interpretability techniques and

lightweight network architectures will be crucial for deploying deep learning models in real-time, resource-constrained

clinical environments, ensuring both performance and practicality in real-world applications.
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