
Computer System Networking and Telecommunications
2022 Volume 1, Issue 1

ISSN: 2630-4635

-25-

A Countermeasure Against a Whitelist-Based Access
Control Bypass Attack Using Dynamic DLL Injection
Scheme
Dae-Youb Kim*

Department of Information Security, The University of Suwon, Gyeonggi Province, Republic of Korea

*Corresponding author: Dae-Youb Kim, daeyoub69@suwon.ac.kr

Copyright: © 2022 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC

BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

A b s t r a c t

Traditional malware detection technologies collect known malicious
programs and analyze their characteristics. Then, a blacklist is made based
on the malicious characteristics detected. The user’s program is then checked
based on the blacklist to determine the presence of malware. However, such
an approach can only detect known malicious programs but not unknown
ones. In addition, since such detection technologies generally monitor
all programs in the system in real time, they might affect the system’s
performance. In order to solve such problems, various methods have been
proposed to analyze the major behaviors of malicious programs and how to
respond to them. Ransomware is designed to access and encrypt the user’s
file. Therefore, a new approach is to produce a whitelist of programs installed
in the user’s system and to only allow the programs listed on the whitelist to
access the user’s files. However, even with this approach, attackers can still
launch a dynamic link library (DLL) injection attack on a regular program
registered on the whitelist. Hence, this paper proposes a method to respond
effectively to DLL injection attacks.

K e y w o r d s

Malware
Ransomware
Blacklist
Whitelist
DLL injection

1. Introduction
Traditionally, the technologies for detecting malware
involve collecting malicious programs, analyzing them
at the code level, and extracting their characteristics.
Malware is detected by comparing and analyzing

programs installed or stored in the user’s system based
on the characteristics extracted. This technique utilizes
a traditional access control technology called blacklist,
which is a list of inaccessible objects, and is very
effective in detecting known malware in the system.

2022 Volume 1, Issue 1 A Countermeasure Against a Whitelist-Based Access Control Bypass Attack Using Dynamic DLL Injection Scheme

-26-

However, blacklist-based malware detection techniques
cannot detect new and unknown malware or malware
variants. In addition, these techniques involve scanning
all files stored in the system, which can degrade the
system’s performance [1].

To address these issues, several methods have been
suggested focusing on monitoring program behavior
rather than its code characteristics to determine if it is
malicious. For example, several studies have attempted
to detect unknown malware using machine learning
techniques [2,3].

An alternative approach is to implement access
control measures on processes that serve a particular
objective, like ransomware, to regulate programs engaged
in malicious activities. In the case of ransomware, it is
characterized by accessing and encrypting certain types
of files stored in the target process. Therefore, some
techniques have been proposed to control the behavior
of ransomware by applying access control technology to
specific files or file directories [4,5].

To design an efficient detection program considering
the behavioral characteristics of ransomware that
accesses specific files stored on the target system, the
following two points can be considered.

(1) Scanning all programs on a system for
ransomware in real-time is highly inefficient.
Thus, it is essential to restrict the scope by
specifying the types and quantity of programs
to be scanned.

(2) There are many different types of malicious
programs such as ransomware, and the number
is growing rapidly. On the other hand, the
average user typically works with a limited
variety of file types, such as documents,
images, and multimedia, and the number of
programs they use to access these files is
usually not extensive.

In light of these considerations, it is more
effective to have a whitelist of programs that are
normally allowed to access certain types of files, and
to allow only those programs to access them, rather

than a blacklist based on an analysis of the collected
ransomware. To this end, when establishing file access
policies within an operating system, an “All Access
Deny” access control policy can be implemented by
default and a whitelist can be created to control the
scope of access granted. In other words, a list (whitelist)
of the types of files that need to be protected on the
system and the programs that are used to access those
files normally can be created, and programs other than
those included in the whitelist are not allowed to access
the files [5-7]. This approach to access control has also
been proposed as a default security system for the
Windows operating system. In the case of controlled
folder access (CFA), which has been proposed to
counter ransomware on Windows operating systems,
access to specific folders is controlled to prevent access
by illegal processes such as ransomware [8].

However, whitelisting access control also has its
limitations. A dynamic link library (DLL) injection
attack involves injecting malicious code into a
whitelisted program, allowing unauthorized access to
files stored on the system. In this case, the program
targeted by the DLL injection attack is whitelisted
and is therefore allowed to access files stored on the
system, resulting in illegal file access. In fact, it has
been shown that CFA, which was introduced as a
ransomware countermeasure in Windows operating
systems, can be disabled by DLL injection attacks [9].

Therefore, in order to detect and respond to
ransomware using whitelist-based access control
technology, a countermeasure against bypass attacks
using DLL injection attacks is essential.

In this paper, we propose a technique for
monitoring DLL injection attacks on whitelist-based
access control solutions and controlling DLL injection
attacks when a program that has previously been
granted file access is attacked. By utilizing the proposed
technique, whitelist-based access control technology
can be implemented more securely. In addition, we
applied the proposed technique to evaluate its potential
for ransomware control and its performance [5].

2022 Volume 1, Issue 1 A Countermeasure Against a Whitelist-Based Access Control Bypass Attack Using Dynamic DLL Injection Scheme

-27-

In Section 2, the whitelist-based ransomware
detection techniques are reviewed. Section 3
describes the utilization DLL injection attack and the
countermeasures proposed. Section 4 describes the
results of the test code applying the proposed technique,
and Section 5 is the conclusion of the research.

2. Whitelist-based ransomware detection
To compensate for the shortcomings of existing blacklist-
based ransomware detection solutions and to enhance
response capabilities, a whitelist-based ransomware
detection solution has been proposed. Figure 1 illustrates
the concept of the whitelist-based ransomware detection
and response solution proposed by Kim et al [5]. In the
Windows operating system, a program’s file access
request is typically handled by the I/O manager, which
generates an I/O request packet (IRP) and forwards it
to the file system filter driver (Step B). The file system
filter driver processes the IRP and delivers the processed
result to the program that requested file access through
the I/O manager (Steps C and D). The technique
proposed is designed so that the IRPs generated by the
I/O manager are obtained by the file usage monitor

(FUM) before the file system filter driver and access
permissions are determined. FUM can be implemented
by utilizing Windows minifilters [10]. The procedure of
the proposed solution is as follows [5]:

(A) When a program requests file access, the I/
O manager generates an IRP to handle the
request.

(B1) The FUM obtains that IRP ahead of the file
system filter driver.

(B2) The FUM analyzes the IRP information and
passes the information about the program
that is trying to access the file to the file
access control manager (FAM).

(B3) The FAM checks whether the process
information is recorded in the whitelist it
manages.

(B4) The FAM allows access if the process is
included in the whitelist, and denies access
otherwise.

(B5) The FAM communicates its decision to the
FUM.

(B6) If the FUM receives a file access denial, it
deletes the IRP and terminates processing.

Figure 1. Whitelist-based Ransomware Prevention System [5]

2022 Volume 1, Issue 1 A Countermeasure Against a Whitelist-Based Access Control Bypass Attack Using Dynamic DLL Injection Scheme

-28-

Otherwise, it passes the IRP to the file
system filter driver so that the program can
perform the remaining procedures to access
the file normally.

3. DLL injection attacks and
countermeasures
3.1. DLL injection attack
Libraries used in software program development are
mainly divided into static libraries and dynamic link
libraries (DLLs). Static libraries are distributed as part
of the executable during the program’s executable
configuration phase, while DLLs are designed to
load libraries into memory as needed during program
execution or to share libraries already loaded by other
processes.

A DLL injection attack is a technique that exploits
the dynamic linking nature of DLLs to illegally insert
and execute attack code into a running process. DLL
injection attacks involve injecting malicious code
into legitimate processes to gain unauthorized access
or evade detection by security solutions designed to
identify malicious processes. There are two main ways
to perform DLL injection attacks: static DLL injection
and dynamic DLL injection.

(1) Static DLL injection attack
When a program legitimately utilizes DLLs,
the operating system analyzes the program’s
portable executable (PE) file as it is being
loaded into memory to obtain the list of DLL
files it needs. This DLL file information is
obtained by analyzing the import directory
table (IDT) of the PE file. Static DLL injection
attacks can be carried out in two ways.
(i) Modifying the PE file: creating an abnormal

DLL file and adding the DLL file information
to the IDT of the PE file.

(ii) DLL file modification: creating an abnormal
DLL file with the same name as the normal
DLL file. In this case, the abnormal DLL

file is designed to include the functions of
the normal DLL.

Static DLL injection technology modifies the PE
file or DLL file of a legitimately installed process in
the system, so it can be detected by utilizing the code
signature of the legitimate file.

(2) Dynamic DLL injection attack
A dynamic DLL injection attack involves
injecting an additional attack DLL file into a
process (or program) running on the system,
and the attack is executed automatically by
implementing the attack code in the DLLMain
function, which is automatically executed
when the DLL file is loaded into memory.
A typical way to perform a dynamic DLL
injection attack within the Windows operating
system is to exploit the CreateRemoteThread
function to cause the LoadLibraryA function to
load an attack DLL file into the target process.
A dynamic DLL injection attack using the
CreateRemoteThread function is performed
according to the following procedure [11]. To
perform a dynamic DLL injection attack, the
attacker first creates two files.
(i) The malicious DLL file to be injected into

the target process: the actual attack code is
designed to be called from the DLLMain
function of the DLL file.

(ii) An attack program (DLL injector) file to
perform the DLL injection: The attacker
runs the DLL injector to remotely inject the
previously created attack DLL file into the
target process.

In this case, the DLL injector is designed to perform
the attack according to the following procedure.

(i) The execution privilege of the injector is set to
SE_DEBUG_NAME. This allows the injector
to have debugging privileges and memory
access.

(ii) The process ID (PID) of the target process is
obtained. The PID can be used to request a

2022 Volume 1, Issue 1 A Countermeasure Against a Whitelist-Based Access Control Bypass Attack Using Dynamic DLL Injection Scheme

-29-

handler for the target process from the system.
(iii) Memory is allocated to the target process and

the path to the location where the attack DLL
file is stored in the allocated memory.

(iv) The system is searched for the starting address
of the LoadLibraryA function currently in
memory. Since the LoadLibraryA function is
one of the Win32 APIs and also uses kernel32.
dll, which is one of the basic system DLLs of
the Windows operating system, the memory
address of the function is determined when
kernel32.dll is loaded into memory after the
operating system boots. Due to the nature of
DLL file operations, all subsequent processes
that use the function will use the same function
address.

(v) The handler of the target process, the starting
address of the LoadLibraryA function, and the
path to the offensive DLL file are specified as
input parameters to the CreateRemoteThread
function so that the DLL file is loaded in the
target process. If the offensive DLL file is
successfully mounted in the target process, the
DLLMain function of the offensive DLL file is
automatically called.

Dynamic DLL injection attacks do not require
modification of the PE file of the target process, nor do
they change DLL files already in use by processes on
the system. However, when access control techniques
such as whitelisting are used to control a process’
access to files, dynamic DLL injection attacks can
bypass or defeat them.

3.2. Detecting dynamic DLL injection
attacks
The most popular technique for dynamic DLL injection
attacks is remote thread creation. Therefore, it is
possible to detect DLL injection attacks if thread-
related events occurring within the system can be
monitored, so suspicious threads can be identified. In

fact, Windows operating systems can monitor events
such as process or thread creation/termination and
image loading in real-time. Therefore, it is possible to
utilize these features to monitor dynamic DLL injection
attack attempts.

(1) Monitoring thread events
CreateThreadNotifyRoutine refers to a routine that

is called when a new thread is created or an existing
thread is terminated. This routine is executed not
only when the Main Thread of the process is created/
terminated, but also when the CreateThread function or
CreateRemoteThread function is called to create a new
thread. These callback functions can be registered using
the PsSetCreateThreadNotifyRoutine function provided
by Windows. This thread notification callback function
is designed to use the parameter NotifyRoutine of type
PCREATE_THREAD_NOTIFY_ROUTINE to specify
the pointer value of the function to be registered to be
called when a thread event occurs. The primitive form
of this callback function is shown in Figure 2. The
thread ID (TID) and PID supplied by the operating
system through the callback function are the ID of the
thread in which the event occurred and the ID of the
process in which the thread is mounted, respectively.

Figure 2. Thread notification callback function type

Wi t h i n t h i s c a l l b a c k f u n c t i o n , y o u c a n
cal l the PsGetCurrentProcessId funct ion and
PsGetCurrentThreadId function to get the PID and TID
that created the thread, but it is important to note
that the PID and TID obtained are not the IDs of the
process/thread that called the function.

(2) Suspicious thread detection criteria
Ko et al. proposed to monitor suspicious processes

2022 Volume 1, Issue 1 A Countermeasure Against a Whitelist-Based Access Control Bypass Attack Using Dynamic DLL Injection Scheme

-30-

and thread creation events by utilizing the thread event
monitoring technique described above [4]. This technique
is proposed to monitor and respond to malware
processes or threads that are commonly exploited by
malware.

When a DLL injection attack is attempted in
a normal process using the CreateRemoteThread
function, the PID and TID are set according to the
caller and callee as shown in Table 1.

In Table 1, column 1 of the ID column refers
to the process and TID values passed by the thread
notification callback functions, respectively. Columns
2 and 3 of the ID column refer to the process and TID
values obtained by calling the PsGetCurrentProcessId
and PsGetCurrentThreadId functions to check the
creator information of the thread where the event
occurred within the thread notification callback
function, respectively.

Case 1 means that process A (PA) creates process
B (PB), and Case 2 means that PA mounts a thread
(TA) in PA for its own use. Both Case 1 and Case 2 are
considered normal behavior.

Case 3 is when a PA mounts a thread on a PB.
As shown in Table 1, in this case, the PID and cPID
values have different ID values, which means that the
process where the thread is mounted and the process
that created the thread are different processes. The
same thing happens the CreateRemoteThread function
is used to remotely inject a DLL. However, Case 1 also
shows similar results to Case 3, but in Case 1, the main
thread of PB is created, which can be distinguished by
checking the number of threads created in the process.

Therefore, if Case 3 is detected within the thread

notification callback function, it is considered as
a suspicious thread creation event and the thread
information is managed by adding it to the suspicious
thread list.

However, since the technique proposed by Ko et
al. [4] only determines whether there is a DLL injection
attack, it cannot determine whether the injected DLL is
used in a ransomware attack.

In this paper, we improved the proposed thread
monitoring technique so that it applies to ransomware
control solutions and verified its performance by
applying it to Kim et al.’s solution [5]. Therefore, we
propose to further monitor the file access of suspicious
threads and use it for file access control. In addition, we
proposed a control procedure that can be integrated into
the existing whitelist-based access control technology.

3.3. Countering whitelist-based access
control bypass attacks
To respond to DLL injection attacks, we improved
the whitelist-based ransomware response monitoring
technology described above.

(1) The PsGetCurrentThreadId function is
called within the I/O callback function of
the minifilter used by the whitelist-based
ransomware response monitoring to obtain
the creator ID value of the thread trying to
access the file. The constructor ID value of the
thread is compared with the ID values of the
suspicious thread list created earlier.

(2) If the same ID is found in the list of suspicious
threads as the creator ID of the thread, the
thread is assumed to have been created by a

Table 1. Process/Thread ID

Case
ID

Case 1 Case 2 Case 3
PA→TA PA→TB

1
PID PID[B] PID[A] PID[B]
TID TID[B] TID[A] TID[B]

2 cPID PID[A] PID[A] PID[A]
3 cTID TID[A] TID[A] TID[A]

2022 Volume 1, Issue 1 A Countermeasure Against a Whitelist-Based Access Control Bypass Attack Using Dynamic DLL Injection Scheme

-31-

DLL injection attack, and access to the file is
denied. Figure 3 illustrates the procedure for
detecting and responding to whitelist-based
access control bypass attacks.

In Figure 1, it was proposed that the file
access control manager compares and analyses
the process information collected in step B2
and step B3 in step B4 to determine the access
rights of the process trying to access the file
and notify the file usage monitoring manager
of the judgment result to handle whether the
process requesting access to the file is allowed
or not. In the scheme proposed in this paper, in
step X, the thread monitoring manager (TMM)
sends the suspicious thread information to the
file access control manager, and the manager
adds the information to the thread blacklist.
Step X is performed independently of the steps
in the existing file access procedure.

(3) When a program attempts to access a file, the
whitelisting access control procedure is repeated
from step B1 to step B3 based on the information
of the program’s file access request process [5].
If the whitelist information determines that the
requesting process has legitimate access rights,

then in step B4, the file access control manager
analyzes the thread blacklist information to
determine whether the thread attempting to access
the file is included in the blacklist. At this point,
the IRP generated to process the program’s file
access request is analyzed to determine if the IRP
information contains any threads that are included
in the thread blacklist. If the thread of the process
recorded in the IRP is blacklisted, the file usage
monitoring administrator is notified to deny file
access.

4 . I m p l e m e n t a t i o n r e s u l t s a n d
performance evaluation
4.1. Implementation results
Figure 4 shows the implementation results of the
proposed countermeasures against DLL injection
attacks, which shows that when a DLL injection
attack is performed against a whitelisted program, the
program becomes a host for ransomware and encrypts
files: (a) shows the ransomware detection program
proposed in Kim et al.’s paper [5]. The detection
program includes chrome.exe and notepad.exe in the
whitelist that defines the access permissions of the .txt

Figure 3. A countermeasure procedure against a bypass attack using DLL injection skill

2022 Volume 1, Issue 1 A Countermeasure Against a Whitelist-Based Access Control Bypass Attack Using Dynamic DLL Injection Scheme

-32-

file. (b) shows the result of accessing the test file using
notepad.exe. (c) shows the result of trying to access
the test file using a program other than the whitelisted
program, and being denied access. In (d), the attack
DLL has been successfully injected into notepad.exe.
(e) shows that the file has been encrypted by the attack
DLL injected into notepad.exe. (f) shows the result
when the notepad.exe with the malicious DLL tries to
access the file, and the access request is denied.

4.2. Performance analysis
Unlike existing approaches to detect and respond to
ransomware, Kim et al.’s solution [5] is designed to

control the behavior of ransomware by applying a
whitelist-based access control technique to control
access to files by all processes except authorized
programs. Therefore, not only the ransomware
selected from the ransomware database, but the newly
implemented ransomware for testing was also measured
to have a malicious activity success rate of 0%.

Since this paper is developed to improve the
performance of the whitelist-based ransomware
detection solution proposed by Ko et al., we controlled
the file access of all processes that have no record in the
whitelist. In addition, even for whitelisted programs,
we simulated the case where a DLL injection attack that

Figure 4. Implementation

2022 Volume 1, Issue 1 A Countermeasure Against a Whitelist-Based Access Control Bypass Attack Using Dynamic DLL Injection Scheme

-33-

exploits remote thread creation is performed against the
program, and the file access that exploits DLL injection
technology was also effectively controlled.

Figure 5 shows the resul ts of the system
performance analysis. For the performance analysis,
the CPU occupancy of the system was measured 30
times assuming three cases.

(1) Case 1 was measured after running Notepad and
a malware detection program on the system.

(2) Case 2 is the result of running Notepad and a
ransomware detection solution implemented
with the technology proposed in this paper.

(3) Case 3 was measured after running the
ransomware detection solution implemented
in WordPad and the technique proposed in this
paper and performing a DLL injection attack.

The measurement environment was as follows: CPU
(Intel i7-10700F), RAM (32GB), OS (Windows 10, 64
bit). As shown in the results for Case 2 in Figure 5, it is
clear that even with the addition of the ability to watch
for suspicious threads, the average CPU occupancy
was 2.05%, which was more efficient than the 3.1%
average occupancy of the general-purpose malware
analysis solution in Case 1. Also, when identifying and
responding to actual DLL injection attacks. As for Case

3, the average occupancy was 2.5%, which was more
efficient than the 3.1% in Case 1.

The implementation performance of the added/
improved module is as follows: Under the same
conditions as in Case 3.

(1) When a DLL injection attack was attempted on
Notepad, the time taken by the TMM in Figure
3 to detect it and update the suspicious thread
list was 110 ns on average.

(2) The time taken by FUM and FAM (Figure
3) to determine the program’s file access
rights based on the suspicious thread list and
whitelist, and to control the malicious behavior
according to the access control policy was 170
ns on average.

5. Conclusion
In Kim et al.’s paper [5] and Microsoft [8], a new
ransomware countermeasure solution that uses
access control technology to control file access of
suspected ransomware processes was proposed. These
technologies were able to control ransomware by
establishing access control policies based on whitelists
and controlling file access of all processes other than
legitimate authorized processes. However, it was

Figure 5. Evaluation (CPU usage rate) result

2022 Volume 1, Issue 1 A Countermeasure Against a Whitelist-Based Access Control Bypass Attack Using Dynamic DLL Injection Scheme

-34-

pointed out that DLL injection technology can bypass
these control policies.

To improve this vulnerability, we incorporated
DLL injection attack monitoring technology into a
whitelist-based ransomware solution to enhance safety.
To improve its efficiency, only DLL injection attacks
on specific applications were monitored and thread
blacklists were managed. In addition, IRPs and thread
blacklists were analyzed to process file access requests
of programs in conjunction with a whitelist-based

access control solution to determine the attack status.
By applying the proposed technology to Kim

et al.’s solution [5], we improved the security of a
whitelist-based ransomware solution by blocking
programs suspected of executing DLL injection attacks
from accessing files. We also measured the system
resource consumption due to the added DLL injection
attack countermeasure and found that it was more
efficient than existing malware detection solutions.

Funding
The paper was supported by a research grant from the University of Suwon in 2021.

Disclosure statement
The author declares no conflict of interest

References

[1] Chakkaravarthy S, Sangeetha D, Vaidehi V, 2019, A Survey on Malware Analysis and Mitigation Techniques.
Computer Science Review, 32: 1–23. https://doi.org/10.1016/j.cosrev.2019.01.002

[2] Gibert D, Mateu C, Planes J, 2020, The Rise of Machine Learning for Detection and Classification of Malware:
Research Developments, Trends and Challenges. Journal of Network and Computer Applications, 153(1): 102526.
https://doi.org/10.1016/j.jnca.2019.102526

[3] Khammas B, 2020, Ransomware Detection using Random Forest Technique, ICT Express, vol.6, no.4,. https://doi.
org/10.1016/j.icte.2020.11.001

[4] Ko BS, Choi WH, Jeong DJ, 2020, A Study on the Tracking and Blocking of Malicious Actors through Thread
Based Monitoring, Korea Institute of Information Security and Cryptology, 30(1): 75–86. https://doi.org/10.13089/
JKIISC.2020.30.1.75

[5] Kim D, Lee J, 2020, Blacklist vs. Whitelist-Based Ransomware Solutions. IEEE Consumer Electronics Magazine,
9(3): 22–28. https://doi.org/10.1109/MCE.2019.2956192

[6] McIntosh T, Kayes A, Chen Y, et al., 2021, Ransomware Mitigation in the Modern Era: A Comprehensive Review,
Research Challenges, and Future Directions. Computer Science ACM Computing Surveys (CSUR), 7(9): 1–36.
https://doi.org/10.1145/3479393

[7] Kim S, Hwang I, Kim D, 2021, A Study on Creation of Secure Storage Area and Access Control to Protect Data
from Unspecified Threats. Journal of the Society of Disaster Information, 17(4): 897–903. https://doi.org/10.15683/
kosdi.2021.12.31.897

[8] Enable Controlled Folder Access, n.d., https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/

2022 Volume 1, Issue 1 A Countermeasure Against a Whitelist-Based Access Control Bypass Attack Using Dynamic DLL Injection Scheme

-35-

enable-controlled-folders?view=o365-worldwide
[9] Abrams L, 2018, Windows 10 Ransomware Protection Bypassed Using DLL Injection, BLEEPINGCOMPUTER,

https://www.bleepingcomputer.com/news/security/windows-10-ransomware-protection-bypassed-using-dll-injection/
[10] Filter Manager and Minifilter Driver Architecture, n.d., https://docs.microsoft.com/ko-kr/windows-hardware/drivers/

ifs/filtermanager-concepts

Publisher's note

Art & Technology Publishing remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

