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A b s t r a c t

With the advancement of technology, cyber-physical systems (CPSs) are 
constantly being upgraded, and it resulted in more types of cyber-attacks 
being discovered. There are many forms of cyber-attack, and all cyber-attacks 
are made to manipulate the target systems. A representative system among 
CPSs is a cyber-physical power system (CPPS), that is, a smart grid. Smart 
grid is a new type of power system that provides reliable, safe, and efficient 
energy transmission and distribution. This paper discusses false data injection 
attacks targeting state estimation and energy distribution in the smart grid, 
along with protective strategies and dynamic monitoring for detection.
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1. Introduction
The design of a cyber-physical system (CPS) refers 
to the integration of computing and communication 
capabilities with the monitoring and control of 
entities in the physical world [1]. Unlike traditional 
embedded systems, CPSs are physical systems 
that are integrated, monitored, and controlled 
by an intelligent computing core. Many CPSs, 
including smart grids, process control systems, and 
transportation systems, are expected to be developed 
using advanced computing and communication 
technologies. The smart grid is a typical electricity-

based CPS that integrates the physical power 
t ransmission system with cyber  processes  in 
computing and communication networks.

False data injection attacks are a new and 
powerful class of attacks on the safety and security 
of CPSs [2]. The goal of the attacker is to inject false 
input data into the system to cause the system to make 
incorrect decisions without attacking the system itself. 
Attackers typically implement cyberattacks against 
sensors that measure the parameters of the physical 
plant of a CPS.

Figure 1 shows a model of a CPS from a control 
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perspective, that is, as a control loop that controls 
and manages the plant. Different types of network 
attacks can be launched against all components and 
connections in the loop, but as shown in Figure 
1, a false data injection attack is launched against 
the sensor. Injecting false data into the system as 
measurements can cause the system to make incorrect 
decisions and take misleading actions.

Figure 1. Control block diagram of CPS

 Given that sensors are typically located in the field, 
a false data injection attack is detrimental. Attackers 
can gain control over sensors, and in various scenarios, 
particularly in measurements like temperature, 
pressure, and chemical concentrations, they can 
manipulate the interfaces connecting these sensors 
to the physical plant with a high degree of precision. 
For example, in a CPS with temperature sensors 
distributed at different locations, an attacker could 
capture temperature measurements over a specific 
duration and subsequently inject these recorded values 
into the sensor. With certain manipulations, this process 
could lead to a significant alteration of the actual 
temperature readings. In fact, the physical system could 
be completely out of control. A well-known attack, 
the Stuxnet attack, manipulated a uranium enrichment 
centrifuge to increase its rotational speed, but the 
rotational speed appeared to be within acceptable 
limits to the operator. As a result, the centrifuge was 
destroyed, which caused serious problems in plant 
operations for a long period of time [3,4].

This paper focuses on false data injection attacks, 
a type of intelligent cyberattack on state estimation 
in smart grids, which are cyber-physical power 

systems. False data injection attacks cannot be detected 
by traditional bad data detection algorithms and 
manipulate state estimation results in an arbitrary and 
predictable way by cooperatively modifying selected 
measurements. With knowledge of the system topology, 
an attacker can easily construct a false data injection 
attack by modifying only a few measurements.

This paper is organized as follows: Section 2 
introduces traditional state estimation theory; and 
Section 3 describes how to construct a false data 
injection attack. Section 4 describes the protection 
strategies and dynamic monitoring techniques 
for detecting false data injection attacks. Finally, 
conclusions and future research are presented.

2. Condition estimation
Since the operating conditions of the power system 
vary from day to day, the operators in the local 
control center ensure that the system remains in a safe 
and normal condition. Achieving this goal requires 
continuous monitoring of the system’s condition and 
taking necessary preventive measures if the system is 
found to be unsafe. Monitoring the state of the system 
in real time is the first and most important step. The 
deployment of SCADA systems in power systems today 
allows control centers to collect all kinds of analog 
measurements and circuit breaker status information. 
However, the information provided by SCADA systems 
is not always reliable due to measurement errors, 
telemetry errors, communication noise, etc. and the 
corresponding operating state of the system cannot be 
directly extracted from the collected measurements [5].

The above-mentioned concerns have been 
addressed by a technique called state estimation of 
power systems. State estimation is a mathematical 
procedure for calculating the best estimate of the 
state variables of a power system. State estimation 
eliminates the effects of bad data and produces reliable 
state estimates. The state estimator output, consisting of 
transmission line active and reactive currents calculated 
from all bus voltage magnitudes and phase angles, and 
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busloads and generation calculated from the currents, is 
the basis for economic dispatch programs and what-if 
analysis programs.

2.1. Weighted least squares (WLS) state 
estimation
The WLS state estimation is the most widely used 
method due to its simplicity and low computational 
requirements. This state estimator adheres to the WLS 
criterion, which aims to minimize the weighted sum of 
squared measurement residuals. Consider a nonlinear 
measurement model z = h(x) + e, where z = (z1, 
z2,...,zm)T is the measurement vector, x = (x1, x2,...,xn)

T

is the state vector, h(∙) is a nonlinear function relating 
the measurement to the state, and e is the measurement 
error vector. Assume that the measurement error follows 
an independent zero-mean Gaussian distribution, i.e., ei

–N(0,) for measurement i. There are m measurements
and n states, with n < m. WLS state estimation can be
formulated mathematically as the optimization problem
minxJ(x) = [z – h(x)T W[z – h(x)], where J(x) is the
weighted sum of the measurement residuals and W is
the covariance inverse of the measurement errors [5].

For alternating current state estimation in power 
systems, the state vector x includes all bus voltage 
magnitudes and bus voltage phase angles except the 
reference bus. Since the relationship between state x 
and measurement z is nonlinear, an iterative technique 
is adopted to minimize J(x). A commonly used 
technique is to calculate the slope of J(x) and then use 
the Newton method to force J(x) to zero.

For DC state estimation, the linear measurement 
model can be expressed as z = Hx + e, where H is 
the measurement Jacobian matrix. The H-matrix is 
determined by the system topology and the resistance 
of the transmission line. At the optimal solution  = 
(HTWH)-1HT Wz, the slope of J(x) vanishes, and an 
estimate of the measurement residual r = z – Hx is 
given by  = [I – H(HTWH)-1HTW]e. In the DC tidal 
model, the voltage magnitude is assumed to be 

constant and 1 p.u. on all buses, and reactive power 
is completely ignored. Therefore, the state variables 
consist only of the voltage phase angle on all buses 
except the reference bus.

2.2. Detecting and identifying bad data
Once the state estimates  and  are determined, the 
presence of bad data can be identified by checking 
whether these estimates are correctly associated with 
the standard deviation. The J() test is commonly used 
to detect the presence of bad measurements. It assumes 
that the random variable J(x) follows a chi-square 
distribution with degrees of freedom k = m – n.  If J() 
is greater than a detection threshold with a determined 
significance level, there is sufficient reason to suspect 
the presence of a bad measurement. If the presence of 
bad data is detected, the rn test is used to identify the 
bad data, where rn is the vector of normalized residuals. 
This test is based on the fact that bad measurements 
produce the largest normalized residuals. Identifying 
and discarding bad data improves the accuracy of state 
estimation.

Bad data can be broadly categorized into single 
bad data and multiple bad data. Multiple bad data 
can appear in measurements where the residuals 
are strongly or weakly correlated. The J(x) and rn 
tests are very effective in situations involving single 
bad data, multiple non-interaction bad data, and 
multiple interaction bad data when the bad data are 
non-conforming bad data that contradict each other. 
However, for conforming bad data with multiple 
interacting and non-contradictory bad data, a good 
measurement may have the largest normalized 
residual, while a bad measurement may have a small 
normalized residual or no residual at all. A method for 
distinguishing between good and bad measurements 
is the combinatorial optimization identification (COI) 
method [6]. This method is based on the fact that the 
Euclidean norm of the multiple normalized residuals 
corresponding to the bad data set is maximal. Assuming 
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that all meters are equally reliable, it is optimal to 
identify the minimum number of bad measurements. 
Another way to deal with multiple interactions and 
bad-fit data is the hypothesis testing identification (HTI) 
method [5]. The method first selects a set of suspect bad 
measurements based on their normalized residuals, 
assuming that the extra measurements are free of error. 
Hypothesis testing is then used to eliminate the list 
of suspicious measurements. The effectiveness of the 
method therefore depends on the initial selection of the 
set of suspicious measurements.

3. False data injection attacks
Smart grid state estimation plays a critical role in 
maintaining the reliable and economical operation of 
power systems. Existing state estimation approaches 
traditionally assume that random bad measurements 
can be detected. However, they have recently been 
shown to be vulnerable to intentional false data 
injection attacks. These attacks cooperatively modify 
measurements taken from multiple meters to skew state 
estimation results without being detected. As SCADA/
EMS systems are increasingly connected to control 
center LANs, they are potentially accessible over 
the Internet. In addition, measurement data is often 
transmitted without encryption over heterogeneous 
SCADA communication networks consisting of fiber 
optic, satellite, and microwave connections. Therefore, 
it is clear that false data injection attacks on state 
estimation pose a potential security threat.

The main idea of Liu et al. [2] is that if the attack 
vector a is a linear combination of the column vectors 
of the Jacobian matrix H, i.e., if a = Hc, then the false 
data injection attack cannot be detected at all. Here, c 
can be any nonzero vector. By considering the injected 
attack as an addition to the measurement error, the 
estimated measurement residual due to the attack can 
be expressed as a =  + [I – H(HTWH)-1HTW]Hc = , which 
is exactly the same as the original measurement. Since 
all existing bad data detection techniques are based on 
measurement residuals, they cannot detect false data 

injection attacks at all. The state estimation solution 
under attack is a = + (HTWH)-1HTWHc =  + c. Since c 
can be a nonzero vector, a spurious data injection attack 
can manipulate the state estimation results in arbitrary 
and predictable ways. Furthermore, if an attacker 
has access to information about the power network 
configuration and transmission line parameters (i.e., the 
H-matrix), it is easy to construct a false data injection
attack. Besides, as pointed out in Kosut et al.’s [7] paper,
due to the sparsity of matrices in power systems, a false
data injection attack only needs to modify the data by a
few meters.

Indeed, fundamental limitations on the ability 
of state estimation to deal with cooperative bad data 
have long been recognized. As pointed out by Dan et 
al. [8], a spurious data injection attack can be viewed 
as a complete set of interacting bad data, which leads 
the estimated state from  to  + c without changing the 
measurement residuals. Another explanation for the 
success of spurious data injection attacks is provided in 
another paper by Kosut et al [9]. If  is the true network 
state and both  and  + c are valid network states, then 
the attacker’s injection vector a = Hc will cause the 
control center to believe that the true network state is  
+ c. Since no detector can distinguish between  and  +
c, this attack vector a is called an unobservable attack.
Constructing a false data injection attack is equivalent
to removing some meters from the network, making the
network unobservable.

Liu et al. [2] investigated how an adversary can 
systematically and efficiently construct attack vectors 
under two realistic attack scenarios, where the attacker 
is either limited to a specific meter or limited in the 
resources required to compromise the meter. The 
physical limitations of the power system were not 
considered in the construction of the false data injection 
attack described above.

If an attacker fails to launch a false data injection 
attack due to resource limitations, they can construct 
an incomplete false data injection attack with a low 
probability of detection. Such attacks are categorized 



2023 Volume 2, Issue 1 An Overview of False Data Injection Attack Against Cyber-Physical Power Systems

-5-

as weak attack schemes.
Most research on false data injection attacks is 

based on DC state estimation. In Teixeira et al.’s [10] 
study, covert deception attacks were attempted on linear 
and nonlinear state estimators. The study of false data 
injection attacks on more realistic AC state estimation 
is much more challenging and still open to exploration.

5. False data injection attack protection
strategy and dynamic monitoring
Ideally, the power system should be fully protected 
so that false data injection attacks are impossible. 
To achieve full protection, the operator needs to 
protect n measurements, which are chosen so that the 
submatrix of H over these measurements is full rank. 
Mathematically, the Jacobian matrix H has Hsc = 0 
if and only if c = 0 for the n × n non-specific matrix 
Hs. This means that if the measurements according 
to the submatrix Hs are protected, an attack vector 
cannot be constructed because Hsc = 0 cannot be 
achieved. These measurements are referred to as the 
basic measurements, which are the minimum set of 
measurements required to ensure the observability of 
the power system. However, because the number of 
state variables in a system is typically large, complete 
protection is impractical. To address this problem, 
effective incomplete protection strategies have been 
proposed. In Dan et al.’s paper [8], cryptographic 
devices were assigned to measurements with low-
security indices associated with sparse attack vectors to 
increase the security level of the entire power system. 
They also proposed an algorithm to find the lowest-cost 
stealth attack in a model of attack and protection costs 
and two greedy algorithms based on the maximum 
minimum attack cost and maximum average attack cost 
models to provide imperfect protection against false 
data injection attacks. Kim et al. [11] proposed a greedy 
algorithm that strategically identifies the measurements 
to be protected. This strategy only considers the 
number of measurements that are subjected to a false 
data injection attack and does not consider the impact 

of the attack on the entire power system.
Despite robust power system design, field 

operations are subject to breakdowns and failures 
due to unexpected conditions. Therefore, real-
time monitoring in the field is necessary to ensure 
continuous safe operation through early detection of 
problems and rapid recovery. The designed monitor 
should detect all types of parameter changes and faults 
to cover all types of attacks and failures. Especially 
in the case of false data injection attacks, the monitor 
must observe incoming parameter measurements and 
detect deviations from normal operation. The wide 
range of parameter changes and failures due to sensor 
and plant faults presents a need to develop robust 
computational tools and methods. Existing methods 
for condition monitoring, a common technique in plant 
monitoring for such parameter changes, are limited, 
and early detection and diagnosis of all types of failures 
is virtually impossible. A good way to develop real-
time monitors for robust and secure cyber-physical 
power systems is to extend existing condition monitors 
to detect cyber-attacks, especially false data injection 
and early failure types.

Computational tools and methods for condition 
monitoring of critical facilities can be categorized 
into two approaches: model-based and model-free [12]. 
Model-based approaches utilize prior information about 
the dynamics of the monitored system under fault-free 
conditions. This information is embedded in a model, 
such as a state space representation or equivalence 
formula. Model-free approaches process the raw 
data and represent it in the form of a non-parametric 
approximation, such as a neural network.

To detect parameter changes that indicate a 
cyberattack or failure, it is necessary to detect 
deviations between non-attack/faulty system behavior 
and behavior when there is a problem. This difference 
is detected through deviations that exceed a threshold. 
This threshold is very important to set for effective 
early detection as well as to avoid false alarms. The 
reliability of a method for detecting and isolating 
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attacks and faults is determined by three main factors: 
the accuracy of the model representing the no-attack/
no-fault operation of the monitoring system, the 
accuracy of the estimation method for the output of the 
monitoring system under no-attack/no-fault conditions, 
and the accuracy of the statistical decision procedure 
and the fault thresholds used to infer the presence of 
faults. In most model-based fault diagnosis approaches, 
where linear and nonlinear observers or filters are used, 
the accuracy of the model is important for reliability. In 
model-free fault diagnosis methods, the accuracy of the 
model extracted from the raw data is an indication of 
reliability. This accuracy can be measured using model 
validation methods. The system may be fault-free, but 
the values of the parameters may be different from 
those used in the model.

To determine whether a model is valid, the output 
of a fault-free system under new operating conditions 
is compared to the expected output provided by the 
model. This is done by calculating the residuals and 
analyzing them statistically, i.e., by evaluating the 
model validity, one can identify whether these residuals 
exceed the predefined threshold and thus determine the 
need for model updating.

The accuracy of the estimation method is important 
in the attack/failure diagnosis process. The estimator of 
an attack-free/fault-free system should have minimum 
variance so that the effects of measurement noise are 
removed and the estimated system output is close to the 
true value. There are many different state observers or 
filters, but among them, the Kalman filter is known to 
provide the minimum variance estimate and is widely 
used in practice [13,14].

Compared to other state observers or filters, the 
Kalman filter performs better in terms of computational 
speed and achieves fast convergence, which makes 
it applicable to real-time fault diagnosis of dynamic 
systems. Moreover, Kalman filters can be redesigned 
to ensure robustness against measurement noise and 
model errors. Therefore, the Kalman filter can be used 
as a suitable estimation method for CPSs because it 

guarantees the optimality of the minimum variance 
estimate and outperforms other state observers or 
filters. The optimal choice of thresholds for detecting 
attacks and faults is important for preemptive attacks, 
including early failures, as well as for fault diagnosis 
and false alarm rates. Similar to model validation, the 
residual sequence is used to determine the random 
variable for a statistical test to detect an attack or 
failure. It can be seen that the elements of the residual 
sequence follow a zero-mean Gaussian distribution and 
that the sum of squares of the residual vector weighted 
by the reciprocal of the covariance matrix follows a 
chi-square distribution. The confidence interval of this 
distribution can be used to detect deviations between 
the attack-free/failure-free model and the monitored 
system behavior.

A simple and effective way to use a Kalman 
filter-based health monitor is to use a Kalman filter 
as a virtual sensor to identify deviations between 
the results of a virtual sensor that mimics the plant’s 
sensor operation in a no-fault mode and the actual 
sensor measurements. Deviations outside of a threshold 
are considered an attack or failure. Combined with 
statistical decision criteria, this method is used to 
detect attacks on smart grid sensors. The Kalman filter 
is used as a virtual sensor that mimics the operation 
of a grid sensor in a no-fault mode, and its output is 
compared to the output of a real sensor to generate a 
residual sequence vector. The squares of this residual 
vector, weighted by the inverse of the covariance 
matrix, are composed of random variables that follow 
a chi-square distribution. Therefore, this variable 
utilizes the properties of a chi-square distribution, and 
a confidence interval approach can be used to define 
the threshold for this statistical test. If the output of the 
statistical test exceeds the threshold, an alarm is raised 
because it indicates that the sensor behavior is outside 
the acceptable range. Most importantly, the statistical 
test can be applied to a group of sensors, allowing the 
identification of vulnerable segments within the smart 
grid. Furthermore, this test can be applied to individual 
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sensors to pinpoint any compromised sensors.

5. Conclusion
In this paper, we described a false data injection attack 
on a representative energy-based CPS, the smart grid. 
Since false data injection attacks are one of the major 

attacks in the field of CPSs, there is a lot of research 
on this topic. However, most of the research is mainly 
focused on sensor networks and smart grids. In the 
future, it is necessary to study false data injection 
attacks in various safety-critical control systems.
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