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ABSTRACT

In this work, the Weibel instability due to inverse bremsstrahlung (IB) absorption in laser

fusion plasma has been investigated. The stabilization effect due to the coupling of the self-

generated magnetic field by Weibel instability with the laser wave field is explicitly showed.

In this study, the relativistic effects are taken into account; here the basic equation is the

relativistic Fokker-Planck equation. The main obtained result is that the coupling of self-

generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel

modes. We found a decrease in the spectral range of Weibel unstable modes. This decreasing

is accompanied by a reduction of two orders in the growth rate spectrum of instability, or even

stabilization of these modes. It has been shown that the previous analysis of the Weibel

instability due to IB have overestimated the values of the generated magnetic fields.

Keywords: relativistic Weibel instability, laser fusion plasma, static magnetic field,

stabilization, Relativistic laser plasma interaction.

.

INTRODUCTION

Weibel instability [1] is a micro instability. It corresponds to the excitation of

electromagnetic modes in plasmas characterized by temperature anisotropy. In a microscopic

way, this corresponds to plasma described by an anisotropic distribution function in velocity

space. The temperature anisotropy can be generated in plasma by different mechanisms,

specifically the heat transport, the expansion of the plasma, and the inverse bremsstrahlung

absorption [2]. We aim in this work to investigate the Weibel instability due to inverse

bremsstrahlung absorption taking into account the stabilization effect due to the coupling of

the self-generated magnetic field by the Weibel instability with the laser wave field in the

relativistic regime, this needs to derive the dispersion relation of low-frequency
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electromagnetic Weibel modes in plasma heated by a laser pulse. The basic equation in this

investigation is the relativistic Fokker-Planck equation [3]. It results highlight new terms in

the dispersion relation due to the coupling between the laser electric field, and the resulting

magnetic field by the Weibel instability. These terms contribute to the instability and the

convection of Weibel modes. We consider inhomogeneous plasma in interaction with a high

frequency and low magnitude laser field. We calculate the distribution function from the

anisotropic Fokker-Planck equation. For this we use the method of separation of time scales

and the iterative method. After, we solve the linear part of the Fokker-Planck equation

associated with the disruption of the distribution function and establish the dispersion relation

of the Weibel modes. Solving the dispersion relation leads to the calculation of the instability

growth rate.

The present work is organized as follows: in section 1, we present the basic equation used in

our theoretical model which is the Fokker-Planck equation. In section 2, we calculate the high

frequency distribution function. In section 3, we calculate the low frequency distribution

function. In section 4, we present an analysis of Weibel instability. Finally in section 5 we

present a discussion of results and a brief conclusion summarizing our main results is given.

1- Basic equation

To describe fully ionized plasma where interactions between particles are dominated by

the Coulomb interactions, it is judicious to use the Fokker-Planck equation given in the Ref

[4]. For electrons, it is written in the laboratory frame as:
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���

����
�
��
����

� � ��� �
���

����
� ��� �

��
����

� ��� � � ��� � �濠ᆡ

Where � � � ��������� is the electrons distribution functions, �� � �濠� ��

��
���
ᆡ濠濠� is the

relativistic Lorentz factor, � � � ��� is the quantity of movement,�� is the electron mass and

e is the elementary charge.

��� � and ��� � mean respectively is the electron-electron and electron-ion collision [5].

��� and ��� are respectively the electric and the magnetic fields present in the plasma.written as:

��� � ���� � ���� and ��� � ���� � ���� , where ���� and ���� represent the high-frequency fields
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associated to the laser wave, ���� and ���� mean low frequency fields associated to the

disturbance in the plasma. The contribution of the high-frequency laser wave magnetic field ����,

can be neglected compared to the contribution of the laser wave high-frequency electric field, ����

as typically:����濠������ . and ����濠�����
�
�
� 濠, The temporal dependence of ���� is supposed to be a

normal mode:

���� � ������ exp ���� ��ᆡ

where ���� and �� are respectively the complex magnitude and the frequency of the laser wave.

In order to solve the equation (1) we consider two time scales, a low-frequency

hydrodynamic time scale and high-frequency (laser field) one. Therefore, the electronic

distribution function � can be written as the sum of a quasi-static distribution function �� ,

which varies slowly over time and a high-frequency distribution function �� , which follows

the temporal variation of high frequency laser electric field ����, so:

� ��������� � �� ��������� � ����� ��� exp ��� ᆡ �3ᆡ

Note that the indices "s" and "h" refer the time scales (low frequency) and high frequency

respectively and will be used throughout this work.

The separation of time scales in equation (1) leads to two kinetic equations: a quasi-static

kinetic equations and a high-frequency kinetic equation, so:
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where The symbol < > denotes the average over the laser wave cycle time � � ��濠�� . The

above two coupled equations are the basic equations in the present work. Note here that the terms

in the electric field ���� and magnetic field, ���� reflect the inclusion, in our study, of the low

frequency electromagnetic field. In particular, the first term on the right hand side in equation (4)

reflects the coupling of quasi-static fields with the laser field. Let us remember here that this field

present in the plasma is generated by the mechanism of the Weibel instability. The right-hand

side of equation (5) is a term of beat or inverse bremsstrahlung; which translates the

contribution of the laser field in the description of the distribution function ��.

2- Calculation of high frequency distribution function.

For computing the high frequency distribution function from equation (4), we suppose

that the effect of the quasi-static field and the (e-i) collisions are small compared to the effect

of the high frequency laser field. Then it is judicious to consider the following scaling for the

high frequency distribution function:

�� � ��
� �� � ��

濠 ���
��
�
��

��
��ᆡ

where the index 0 and 1 correspond to the magnitude order of high frequency distribution

function.

First we analyze the equation (6) for typical physical parameters of laser-plasma

interactions: electronic temperature, �� � 濠���耀 , the (e-i) mean free path, ��� � 濠�� and

laser wave length �� � 濠����� . It appears that the laser frequency �� , is very important

that the collisions frequency, ��� . At the zero order, equation (4) is written as:
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where the �� solution is:
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By using iterative method, is calculated as:
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where we have used the Einstein notation on the repeated index � and � .

3- Calculation of low frequency distribution function

In order to obtain the low frequency distribution function, we substitute the expression of

the high frequency distribution function (eq. 9) in equation (5). After some mathematical

investigations, the following equation is obtained:
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For resolve this equation, we consider the following scaling:
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�� � ��
��ᆡ �

��� �濠�ᆡ

with �� � ��
��ᆡ ,The distribution function ��

��ᆡ describes the plasma in presence of high

frequency laser field ��, however �� corresponds to the perturbation associated to quasi-static

electromagnetic field: �� and ��� Using the above development (11), The evolution equation

of the perturbed function is obtained from low frequency equation (10) by considering the

first term order, so:
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��ᆡ �濠3ᆡ

Where
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and
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�濠牠ᆡ

We now return to the previous analysis of Weibel modes by considering the electron ion

collisions as described by the relaxation operator of Krook type, as follow:

��� �� �
� �
�3

��
3 ��

3 ��� � 濠ᆡ��� � ��� �濠�ᆡ

Where � �
��
榠

����
and ��� is the e-i mean free path. and l is the order of the Legender

polynomial or the ordre of the component of the distribution function trucated on the

Legender polynomials.

3-1-Calculation of the distribution function order (0)

Using the above development (12) and (16), we obtain the equation of order 0 as:
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In the subsequent, we suppose that the non-perturbed plasma is homogenous in presence of a

high frequency laser electric field, ����, with a linear polarization on the x direction. In this

geometry the above equation becomes:
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��ᆡ

��
�
濠
�
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�
���

��� �
�
���

��
��ᆡ � ��� � ��

��ᆡ �濠�ᆡ

Where �� �
����
�

is the electrons momentum oscillation in the laser electric field, ���� The

electrons oscillation induces an anisotropic distribution function in the direction of ���� :

��
��ᆡ������ᆡ � ��

��ᆡ�������ᆡ. With introduction of the variable, µ � ��
�
the above equation (18) is

presented as:

����
��ᆡ
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�
���
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��ᆡ
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�µ�
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��ᆡ
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� 3� 濠 � µ�

濠
����
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Where Now, we develop the distribution function ��
� ���µᆡ . on the Legendre polynomials

�� µ , [6,7], Then the above equation (19) can be developed After some algebra using

recurrence relations between Legendre polynomials of several orders , we find the equation of

the isotropic distribution function, which corresponds to the projection of the above equation

(19) on the Legendre polynomial of order 0,so:

����
��ᆡ

��
� ���

��
�

�
濠
3
�
�
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濠
�榠
����

��ᆡ

��
�

濠
����

濠
��
�
濠
��
����

��ᆡ

��
� ��� ���

� ���ᆡ

In this equation, the terms proportional to the second anisotropic distribution function ���
� ,

are ignored. This is justified by the fact that:
���
�

���
� �

��
�

���
� 濠 , which correspond to the low

magnitude laser wave approximation largely fulfilled in the laser-plasma interaction

experiments. Note that this equation corresponds to that obtained in the reference [8].
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The equation of the second anisotropic, ���
� , is calculated under the same approximation by

projection of the equation (18) on Legendre polynomial, p2, so:

����
��ᆡ

��
�
���

3 ��
3

�3
��
�

3 牠
濠
��

�
��

��
����

��ᆡ

��
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3
����

濠
��
�
濠
��

�
��

�3���
��ᆡ �

���
3 ��

3

�3
���
� ��濠ᆡ

where we have neglected in this equation the terms proportional to ��榠
� and those proportional

to
��
�

���
����

� Then, the expression of the second anisotropic distribution function is obtained in

the stationary approximation is
����

��ᆡ

��
� � , generally considered in the Weibel instability

analysis, so:

���
� �

��
�

3 牠
濠
��

�
��

��
����

��ᆡ

��
�

3
����

濠
��
�
濠
��

�
��

�3���
��ᆡ ���ᆡ

3-2-Calculation of the perturbed distribution function.

it appears that the perturbed distribution function ��� , depends on the non perturbed

distribution function, ���
� . Some simplification can be made on equation (13). In fact the term

����
��
�� ��� (where � is the Weibel mode pulsation), can be neglected compared to the

collisions term, ���� ,that the interested Weibel modes are quasi-statics: � � ��� .

Furthermore, by considering that
��
�

���
� 濠, which corresponds to a low magnitude laser wave,

it appears also that ��� ��� is small compared to ��� ��� . Finally, by considering the

Faraday law, �� �
�
�
�� , ��� and the condition, �

���
� 濠 , the electric fied term can be

neglected compared to magnetic field term in the expression of ��� . With these

approximations,

The linear polarization of the laser wave in the x direction allows to an positive anisotropy in

temperature:�� � �� . This is susceptible to excite perpendicular Weibel modes:��� � ��� For

simplification, we consider the geometry: ( ��� ��� ��� ��� ������ �������� ��� ). In this geometry, the

equation (13) can be presented as:
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where

��� ���
� ��

濠
�
���
����

��
� ��

�����
�

������
� ��

�����
�

����
��榠ᆡ

In the above equation (23), the anisotropic component has been neglected in the term of �� .

In the right hand side of equation (23), the first term is the source term of Weibel instability,

however the term ��� ���
� corresponds to the coupling between the quasi-static magnetic

field, �� , and the laser wave field (~p0 ). This term has been ignored in the previous studies of

the Weibel instability [2,9] in spite that it is comparable to the source term. .For resolve

equation (23), first we express the velocity vector in spherical coordinates:

�� � ��ᆡ����� � ������ᆡ����� � ���������.where equation (23) can be presented as:

��
��
����

�ᆡ� � � ��� � ��� � �� � �� ��牠ᆡ

where

�� � ��������ᆡ��
����

�

��
���ᆡ

�� �� �
���
����

�ᆡ�������ᆡ��
濠
�3

�
��

�3
����

�

��
�

濠
��
�����

� �����
� �

�
�
�
����

�

��
���ᆡ

The following step is to develop ���������ᆡon the spherical harmonics ��
� ��� ,[8]:

��� ����� �
���

�

����

���

���� ��� ��
� ��� ���ᆡ

The equation (25) then becomes:

��
��
����

�ᆡ� � � ��� �
���

�

����

���

���� ��� ��
� ��� � ���濠�濠 � �����濠 ���ᆡ



Company Registration No.: 201427293E
7030 Ang Mo Kio Avenue 5#04-155
Northstar @ AMK Singapore (569880)
www.Whioce.com

���濠�濠 ��
��
3 ���

����
�

��
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��
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�
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�3
����

�

��
�

濠
��
�����

� �����
� �

�
�
��
����

�

��
ᆡ ��

�濠 �3濠ᆡ

After some investigation using the properties of spherical harmonics, the equation (29)

becomes:

��� � ������ � �
���
����

�� ���

榠�� � 濠
�����濠�� � �

���
����

�� � 濠ᆡ� ���

榠�� � 濠ᆡ� � 濠
�����濠�� �

� ����
� � ����

� �3�ᆡ

where ����
� ��ᆡ ����

� are respectively the projections of �� ��ᆡ �� on the spherical harmonic

of order (l,m). Note here that only the components ���濠
�濠 ��ᆡ ����

�濠 are not vanishing.

The equation (32) is the basic equation for calculate��
濠 .It is a recurrence relation between

������������濠��, and �����濠��. Note that for � 3 , this equation can be write as:

��� � ������ � �
���
����

�� ���

榠�� � 濠
�����濠�� � �

���
����

�� � 濠ᆡ� ���

榠�� � 濠ᆡ� � 濠
�����濠�� �

� � �33ᆡ

The above system (33) is resolved by using a mathematical method based on the inversion of

the collisions propagator in spherical harmonics basis using the continuous fractions [10]. The

following solution is obtained:

���3�� �� ��
�榠

��
榠��

榠
� � ��

3牠
�3�������� �3榠ᆡ

where �3�� means the continuous fraction defined by the recurrence relation:

���� ��� � ��� � 濠ᆡ� �
����

��
���

�
�� � 濠ᆡ� ���

榠�� � 濠ᆡ� � 濠
���濠��

�濠

�3牠ᆡ
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Note here that the equation (34) is the exact solution of (32). It gives a relation between

���3�� and ������ with including the contributions of all anisotropies ������ through the

continuous fractions ����.

From equations (32) and (34) coupled with the continuous fraction (35), we can calculate all

anisotropic ������ of the perturbed distribution function. In this work, we limit to ���濠�濠 and

���濠��濠 enough for study the Weibel instability.

The equation of ���濠�濠, is deduced from (32) by putting � � 濠 ��ᆡ� � 濠 , so:

� ��� � 濠ᆡ���濠�濠 �
3
濠牠��

�榠

��
榠��

榠 �����濠 �
�3

��
3��

3 ��濠�濠 �3�ᆡ

The equation of �����濠 is deduced also from (32) by putting � � � ��ᆡ� � 濠 , so:

� ��� � 濠ᆡ�����濠 �
3
濠牠
��

�榠

��
榠��

榠 ���濠�濠 �
�
3牠
��

�榠

��
榠��

榠 ���3�濠 �
�3

��
3��

3 ����濠 �3�ᆡ

With substitution of (34) in (37) and by using (35), starting from (35), we obtain after some

algebra the explicit expression of ��濠�濠 , so:

���濠�濠 �
� 牠
��

�����濠 � ���濠�濠ᆡ����濠 �
�3

��
3��

3 �濠�濠��濠�濠 �3�ᆡ

By the same method, we compute the explicit expression of ���濠��濠, so:

���濠��濠 �
� 牠
��

�����濠 � ���濠��濠ᆡ�����濠 �
�3

��
3��

3 �濠��濠��濠��濠 �3�ᆡ

by using the expression of ���
� [equation (22)], the components �����濠 use later is obtained as:

�����濠 ��
��
3
���
�
��濠�濠

�3

��
3��

3

����
��ᆡ

��

� 濠 � ���濠�濠 ������
��
濠牠

��
� 濠
�3

�
��

�3
����

�

��
�

濠
��
�����

� �����
� �

�
�
�
����

�

��
ᆡ �榠�ᆡ

4-relativistic Weibel instability analysis

This paragraph is devoted to the analysis growth rate of the relativistic Weibel instability.

We determine the dispersion relation of the Weibel modes and deduce the growth rate of
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Weibel instability; The dispersion relation of electromagnetic modes can be calculated using

the perturbed Fokker-Planck equation coupled with Maxwell's equations presented as

follows[11]:

��� � ��� ��� ��
�����
��

�榠濠ᆡ
and

��� � ��� ��� �� ���� �
濠
��
�����
��

�榠�ᆡ

is the current density defined by j

where

�� �� ����
�

����
�� ���������� ᆡ�� ��� �榠3ᆡ

By considering that the spatio-temporal dependence of the field ���� and ��� ��� as a Fourier mode

���� ��� � �������� equations (41) and (43) can be represented as:

��� � ��� �榠榠ᆡ

��� �� ����
�

����
��� ᆡ���� �榠牠ᆡ

By developing the function ���, In the spherical harmonics basis ��
�����ᆡ , the equation (45)

reads as:

��� �� ����
��
3 �

� �
����

3
����濠��濠 �� ���濠�濠ᆡᆡ� �榠�ᆡ

for ���
� � F p ,Where � � is The Jüttner (relativistic Maxwellian) distribution function[12]

is given by:

F p � � exp � �
濠kb� �榠�ᆡ

Where E is the energy of particle given by:

� � mec���� � 濠ᆡ �榠�ᆡ

� � �
濠

K� µ
µ

榠π m c 3 � � ��
mec�

kbT
�榠�ᆡ

�� � 濠� ��

��
���

濠濠�
is the Lorentz factor and K� µ denotes the modified Bessel function

defined by:
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K� µ �
濠
�
������� �3濠���� �牠�ᆡ

Finally The Jüttner (relativistic Maxwellian) distribution function is given by:

F p �
濠

K��µᆡ
µ

榠π m c 3 exp �
mec�

kbT
濠 �

p�

me
�c�

濠
�
� 濠 �牠濠ᆡ

This function can be presented in the case of weakly relativistic plasma, where η ≫ 濠 and the

modified Bessel function can be written as : K��ηᆡ �
�
�η

濠
�exp � � ηᆡ. This approximation is

justified in the inertial fusion experiments. Typically ��濠���� � ���� for �� � 濠� ��耀� By

developing the relativistic Maxwellian distribution function as:

F P �
濠
�
������� �3濠�exp �

����

���
濠 �

��

���
���

�牠�ᆡ

Using the equation (40) (46) and (52) The dispersion relation in a plasma hight relativistic

temperature, is obtained:

����

��
� � �

濠
3

�
�
濠
耀�
牠�

�

� ��

��
牠��

� �濠�濠 exp �
�
���

ᆡ��

�
�

濠牠 3�
��
�

耀�
3

�

� �榠

��
���

濠
��
3
牠
� �

��

耀�
� �

��

��
榠��

榠
�
��
� 榠

��

耀�
� 濠 � ���濠�濠 exp �

�
���

ᆡ� � �牠3ᆡ

The relativistic growth rate of Weibel instable mode  is obtained explicitly from this dispersion

relation, so:

� �

��
3
�

�
�
耀�
牠 �

���

��
�

濠

�
� ��

��
牠��
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濠
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� �
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���

�
��
� 榠
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�
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�
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Where

�濠�濠 �
濠

��� �
濠
3��

����

��
���

� ᆡ
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5- Discussion and Conclusion

The first term of equation (54) corresponds to a loss term due to Landau damping and to

collisions effect; it is dominated by collisions loss in the limit: ����� � 濠ᆡ while in the non-

collisional limit � ���� ≫ 濠ᆡ , it is dominated by the Landau damping of electromagnetic

modes.

The second term, ���
�� corresponds to the WI source. Equation (54) gives explicitly the

growth rate of the Weibel modes excited by IB absorption in laser fusion plasma as function

of laser pulse and plasma parameters via an integral form.

The spectra of the growth rate ���ᆡ which give the growth rate of the all the instables

Weibel modes (not only the ���� ). The calculated ���ᆡ in our paper, contains two

contributions: a Landau damping and an instability source propotional to the second

ansisotropy of the distribution function developped on the legendre polynomials, �� which is

propotional to the laser intensity via the term ��
� � �.

This shows clearly that the source of the anisotropy and consequentely of the instability is the

laser heating.

We have presented in (Figures 1) the growth rate spectra of Weibel instability � � , as

function of the collision parameter ���� for typical parameters of the laser pulse and plasma.

We point out that without the stabilization term, ��� ���
� . In addition, the comparison of the

obtained spectra with previous works shows an overestimates by two orders in the growth rate

of the most unstable Weibel mode in the non-relativistic case.

In conclusion, the Weibel instability is theoretically studied using the Vlasov equation by

considering the Krook collisions model. The dispersion relation of the Weibel modes is

explicitly established under some justified approximation in the laser-fusion experiments [13,

14]. Taking into account to stabilization effect by the inclusion of the term ��� ��
� led to a

significant reduction in the Weibel instability growth rate. Numerical treatment of model

equations shows that the growth rate of the most unstable Weibel mode decreases by two

orders of magnitude. This decrease in the growth rate magnitude is accompanied by a greater

reduction in the spectral range of instability. For high density plasma, the Weibel modes

become completely stables. Therefore, the generation of magnetic fields by the Weibel
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instability due to inverse bremsstrahlung should not affect the experiences of inertial

confinement fusion. Several possible extension of this study is possible; namely the taking into

account of the nonlinear effect [15, 16, 17] due to the high intense laser pulse.
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Figure 1: growth Rate of instability � from the Krook model ,depending on the collision
parameter ����, for typical parameters of laser pulse and fusion plasma: �� � 濠���耀, ��� �
濠��, �� � 濠����� ne=1026 cm-3 and p0/pt=0,1.
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