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A b s t r a c t

This paper introduces model compression algorithms that make a deep neural 
network smaller and faster for embedded systems. The model compression 
algorithms can be largely categorized into pruning, quantization, and 
knowledge distillation. In this study, gradual pruning, quantization aware 
training, and knowledge distillation which learns the activation boundary 
in the hidden layer of the teacher neural network are integrated. As a large 
deep neural network is compressed and accelerated by these algorithms, 
embedded computing boards can run the deep neural network much faster 
with less memory usage while preserving reasonable accuracy. To evaluate 
the performance of the compressed neural networks, we evaluate the size, 
latency, and accuracy of the deep neural network, DenseNet201, for image 
classification with the CIFAR-10 dataset on the NVIDIA Jetson Xavier.
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1. Introduction
To perform autonomous decision-making, unmanned 
vehicles need to rapidly perceive their surroundings by 
utilizing information acquired from various sensors. In 
particular, visual information from cameras contains 
high-dimensional data and can be effectively utilized. 
By employing image processing algorithms, it is 
possible to automatically extract and analyze features 
from the given visual data, enabling a high-level 

understanding of the surrounding environment, such as 
object detection and classification.

S ince  AlexNet  won  the  ImageNet  ob jec t 
classification competition in 2014 [1,2], convolutional 
neura l  ne tworks  (CNNs)  have  demons t ra ted 
exceptional performance in the field of computational 
image processing. The use of residual connections 
has addressed the problem of gradient vanishing, 
which occurs as the number of hidden layers in an 
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artificial neural network increases [3]. With the residual 
connection structure resolving the gradient vanishing 
issue, research has focused on designing neural 
networks with more hidden layers and weights to 
achieve higher accuracy. Recent developments, such 
as the Vision Transformer [4], involve artificial neural 
networks with approximately 630 million weights.

These enlarged neural networks come with a 
significant computational cost compared to other 
algorithms, making high-performance computing 
devices such as GPUs essential. However, embedding 
high-performance computing devices into low-power 
embedded systems presents numerous challenges. 
Additionally, most embedded systems have limited 
memory, making it impossible to deploy artificial neural 
networks in some cases. Therefore, for systems like 
small autonomous unmanned vehicles that have limited 
computing power but require real-time performance 
or drones with constrained mission durations, efficient 
power management, compression, and acceleration of 
artificial neural networks are essential [5]. As a result, 
recent research efforts have been actively focused on 
compressing and accelerating artificial neural networks 
for deployment in embedded systems [6-8].

The goal of artificial neural network compression 
and acceleration algorithms is to develop compressed 
and accelerated artificial neural networks while 
preserving the performance of existing neural networks 
as much as possible. There are three primary algorithms 
for artificial neural network optimization: 

(1) Pruning: Removes weights from the neural
network that do not significantly impact its
accuracy [9,10].

(2) Quantization: Reduces the data precision of
artificial neural network weights to match the
target hardware effectively [11].

(3) Knowledge distillation: Transfers knowledge
from a larger neural network to a smaller one,
enhancing the accuracy of a smaller model [12].

All three types of algorithms have been reported 
to effectively compress and accelerate artificial neural 

networks while preserving their existing accuracy [8,12-14]. 
However, there is limited research comparing and analyzing 
the performance of these three optimizing algorithms when 
applied together in embedded systems.

Therefore, this paper summarizes artificial neural 
network compression and acceleration algorithms 
theoretically and applies these algorithms collectively 
to the same environment and convolutional network 
for image classification tasks. Additionally, the 
performance of the compressed artificial neural 
network is compared and analyzed on the CPU of the 
embedded system, NVIDIA Jetson Xavier, to provide 
insights and comparisons.

2 . Trends  in  the  deve lopment  o f
convolutional neural networks
The AlexNet, which won the ImageNet competition in 
2012, consists of 8 layers, including 5 convolutional 
layers and 3 fully connected layers, by combining 
various convolutional filter sizes of 11×11,5×5, and 3×3. 
AlexNet demonstrated that having a deeper structure, in 
contrast to the LeNet composed of only 2 convolutional 
layers [15], can lead to better performance [1]. Building 
upon the research findings from AlexNet, VGGNet 
systematically increased the depth of CNNs. VGGNet 
constructed 19 deep convolutional layers using only 3×3 
convolutional filters and achieved second place in the 
ImageNet competition [16]. Following VGGNet, there 
were numerous attempts to improve the performance 
of artificial neural networks by staking neural 
network hidden layers deeper. However, this approach 
encountered limitations due to the problem of gradient 
vanishing when constructing neural networks with 
depths beyond a certain threshold.

Nevertheless, in 2015, ResNet was developed and 
used a residual connection structure to address the 
gradient vanishing problem. ResNet, by employing 
the residual connection structure, constructed a neural 
network that was 8 times deeper than the previous 
VGGNet and won the 2015 ImageNet competition [3]. 
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DenseNet further advanced this residual connection 
structure by not only using it to add features from 
hidden layers but also concatenating the features 
themselves [17]. The aforementioned research trends 
in image classification aimed at increasing accuracy 
by making neural networks deeper and with more 
convolutional filters. However, these neural networks 
posed challenges for deployment on mobile devices 
such as smartphones or embedded systems due to their 
size and computational demands. Therefore, this study 
explored the feasibility of applying compression and 
acceleration algorithms to the DenseNet-based neural 
networks, known for their superior performance among 
the aforementioned convolutional artificial neural 
networks, in embedded systems.

3. Pruning
Artificial neural networks are composed of a large 
number of weights, ranging from millions to even 
billions. A trained artificial neural network consists of 
weights with small absolute values, and it is known 
that among these weights, there are weights with low 
significance for inference [18-20]. Therefore, one way to 
compress artificial neural networks is to selectively 
remove weights with low significance, and this 
algorithm is called pruning.

Pruning algorithms can be broadly categorized 
into two types: unstructured pruning and structured 
pruning. The former sets the values of weights 
that are considered unnecessary for inference to 0. 
As a result, sparse weight matrices are generated, 
and artificial neural networks can be compressed 
using data structures such as coordinate list (COO), 
compressed sparse row (CSR), and compressed 
sparse column (CSC). The latter applies pruning to 
various components of the artificial neural networks, 
such as convolutional filters and individual hidden 
layers, rather than individual weights. It proceeds by 
completely removing unnecessary weights that are 
part of these components. Therefore, with structured 
pruning, it is possible to compress artificial neural 

networks without the need for data structures such 
as COO, CSR, and CSC. However, this algorithm 
may have difficulty preserving accuracy compared to 
unstructured pruning, as it may also remove significant 
weights within convolutional filters or specific hidden 
layers.

When applying pruning algorithms to artificial 
neural networks, the most crucial consideration is to 
preserve the model’s accuracy as much as possible. 
If too many weights are pruned at once, the accuracy 
of the artificial neural network can be severely 
compromised. Thus, most algorithms follow a process 
where a small portion of weights is pruned (Figure 
1A) and then undergoes a retraining process. The final 
compressed model is created by repeatedly applying the 
pruning algorithm in the same manner to the retrained 
neural network.

However, this iterative pruning and retraining 
structure has the drawback of high training costs in 
creating compressed artificial neural networks. To 
address this issue, a gradual pruning algorithm (Figure 
1B) that integrates pruning and retraining has been 
proposed [13]. Gradual pruning is a member of the 
unstructured pruning family of algorithms, and it allows 
the creation of compressed artificial neural networks 
with minimal training costs while maximizing accuracy 
preservation. The study proposed a pruning scheduling 
as shown in equation (1) [13].

 for 

(1)

Here, t represents the point in the training process 
when the pruning algorithm is applied, and the interval 
during training when the pruning algorithm is applied 
can be determined by specifying t0 and n. Si is the 
initial sparsity ratio typically set to 0 when applied 
to the initial artificial neural network, while Sf is the 
final sparsity ratio that the artificial neural network 
will eventually have. Equation (1) shows that, through 
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gradient descent, when weights are updated,  St % of 
the total weights are pruned. In this study, gradual 
pruning was used on compressing DenseNet201 
without a decrease in accuracy.

Figure 1. Flow chart of the pruning process. (a) shows a gen-
eral pruning algorithm that takes a long time to get compressed 
neural networks; (b) combines pruning and training processes to 
obtain compressed neural networks in a short time.

4. Quantization
The weights of neural networks are represented in a 
32-bit floating-point format, which allows for precise
decimal representation, and they are updated through
error backpropagation and gradient descent. While this
floating-point representation provides a wider range
of representable numbers compared to the fixed-point
representation, it is considerably slower in computation
speed than fixed-point representation, where real
number operations can be replaced with integer
operations. Hence, it is possible to accelerate the
inference of artificial neural networks by converting the
floating-point weights of trained neural networks into
fixed-point representations. In addition, representing
weights originally in 32 bits as 16 bits or 8 bits reduces
the size of the neural network. For example, in the case
of DenseNet201, which has approximately 18 million
weights, if the weights are represented in 32 bits, the
model size would be around 70 MB. However, by using
8-bit weights, the model size can be reduced to only 19
MB. Algorithms that leverage these characteristics of
computer computation and structure to enable neural

network compression and acceleration are known as 
quantization.

Figure 2 illustrates the process of quantizing 32-
bit floating-point values into 8-bit integer values. 
Symmetric linear quantization is performed using 
equations (2) and (3).

 where 

　(2)

    (3)

Here, x represents the input or output values of the 
quantized weights or activation functions of the neural 
networks and α,β represents the range of x. In the case 
of symmetric linear quantization, it has the relationship 
α=–β. s is the scale factor used to convert values 
expressed in different bit widths and can be calculated 
using equation (2).

Figure 2. Symmetric linear quantization. The symmetric linear 
quantization algorithm maps 32-bit floating point representation 
to 8-bit integer representation.

When applying quantization algorithms to neural 
networks, just like pruning algorithms, it is essential to 
preserve the accuracy of the original network as much 
as possible. In the case of quantization from 32 bits to 
16 bits, the range of representable numbers decreases 
but does not significantly impact the neural network’s 
accuracy. However, when quantizing to 8 bits, the 
range of representable numbers decreases significantly 
compared to 32 bits, which can lead to a substantial 
reduction in the neural network’s accuracy. Therefore, 
the most critical aspect of quantization algorithms 
for preserving the accuracy of the original neural 
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network is selecting the value of  for quantization. 
Quantization algorithms are classified into three main 
categories according to the method used to determine 
the parameter s, as shown in Table 1: dynamic 
quantization, post-static quantization, and quantization-
aware training.

The first is dynamic quantization, where the 
given weight matrix is quantized using equation (2). 
Quantization of the input and output values of activation 
functions is performed in real-time by calculating s 
while the artificial neural network operates in its actual 
working environment. Dynamic quantization has 
the disadvantage of being slower compared to other 
quantization algorithms because it quantizes the input 
and output values of activation functions each time the 
artificial neural network runs. The second quantization 
algorithm is post-static quantization, which is different 
from dynamic quantization. In post-static quantization, 
a representative subset of data is input into the artificial 
neural network to calculate the  value in advance for 
quantizing the input and output values of activation 
functions when applying the quantization algorithm. 
Post static quantization does not require real-time 
quantization during the operation of the artificial neural 
network, leading to faster inference speed compared to 
dynamic quantization. The final quantization algorithm 
is quantization-aware training (QAT), where the 
quantized artificial neural network is retrained using 
all the data used during the network’s original training. 
QAT is the most accurate among the three algorithms 
and ensures a similar inference speed as post-static 
quantization. However, it requires additional training 
for creating compressed neural networks. The accuracy 
of post-static quantization and QAT are compared, and 
the interference acceleration performance on embedded 

systems is verified in this study.

5. Knowledge distillation
For systems with limited computing resources, such as 
embedded systems, the design of compressed artificial 
neural networks that are suitable for embedding and 
smooth operation of artificial neural networks is 
essential. Yet, these networks often have an insufficient 
number of weights, making it challenging to achieve 
robust performance. Hence, a learning method is 
required to maximize the performance of these artificial 
neural networks.

To address this, knowledge distillation was 
proposed to enhance the performance of compressed 
artificial neural networks using the concept of “teacher 
and student” [12]. The “teacher” is a high-performance 
artificial neural network with more weights compared 
to the “student”, while the “student” is relatively 
smaller in size and has lower performance compared 
to the “teacher”. As shown in Figure 3, the “student” 
makes different predictions from the “teacher” for the 
same input data, and the “student” learns by referring 
to the predicted values of the “teacher” using equations 
(4) to (7).

　(4)

　(5)

(6)

 where .
(7)

Table 1. Quantization algorithms

Latency Accuracy Data requirement
Dynamic quantization Low Best No
Post-static quantization Lowest Good Partial
Quantization-aware training Lowest Best All
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Here, α and T are hyperparameters, where α is an 
indicator of how much the “student” should reference 
the prediction of “teacher” during learning, and T 
adjusts the shape of the distribution of predictions 
between the “teacher” and “student” using equations 
(5) and (6). ys and yt are the outputs of the “student”
and “teacher” networks, respectively, while ytrug is
the ground truth data for the input data. LKLD is the
loss function calculated by using Kullback-Leibler
divergence between the distributions of predictions by
the “teacher” and “student”.

Figure 3. Knowledge distillation. The student network refers to 
the output of the teacher network for better training results.

Unl ike  t radi t ional  knowledge dis t i l la t ion 
algorithms that only use the predictions from the final 
layer of the “teacher”, there are knowledge distillation 
algorithms that allow the “student” to reference the 
predictions from the “teacher’s” hidden layers as well. 
This generally leads to better performance compared 
to traditional knowledge distillation, and it can be 
used not only for classification problems but also for 
regression problems. Heo et al. proposed a knowledge 
distillation technique where the “student” mimics the 
activation boundary of neurons in the hidden layer of 
the “teacher” artificial neural network using equations 
(8) and (9). This approach significantly improved the
accuracy of the “student” model [14].

(8)
where

(9)

Here, T(·) and S(·) are the output values of the 
activation functions of the “teacher” and “student”, 
respectively, and I is the input data. σ(·) is the rectified 
linear unit (ReLU) activation function and μ1 is 
the unit margin vector. r(·) is a connector function 
proposed by Romero et al. [21], which serves to align the 
dimensions of the outputs of “teacher” and “student”.  
⊙ denotes element-wise multiplication, and ρ(·) is a 
function that calculates the activation state of neurons 
in the neural network. This knowledge distillation 
algorithm is divided into two main phases: initialization 
and training. Initialization is the phase in which the 
“student” forms activation boundaries similar to those 
of the “teacher”, and does not refer to ytrue. After the 
initialization phase, the “student” model continues to 
learn without the assistance of the “teacher”, using 
the entire training dataset. In this study, an algorithm 
from Heo et al. was used to improve the performance 
of the smaller neural network model, “student” 
(DenseNet121), with the guidance of a larger model, 
“teacher” (DenseNet201) [14].

6. Neural network compressing results
6.1. Artificial neural network training 
parameters and target neural network 
configuration
In this study, DenseNet201 was trained using 
TensorFlow on the CIFAR-10 dataset for image 
classification. The three aforementioned compressing 
algorithms were applied to the trained DenseNet201. 
The training configurations for DenseNet201 are shown 
in Table 2.

Since DenseNet is optimized for the ImageNet 
dataset, the CIFAR-10 was resized to 224×224, the 
same size as the ImageNet dataset, and the values of 
each channel were normalized to be within the range of 
0 and 1. Data augmentation was also applied [22].

Top-N Accuracy is an evaluation metric commonly 
used in image classification problems. It considers 
a prediction to be correct if the top N values in the 
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discrete probability distribution output from the final 
layer of the neural network contain the correct label.

After training DenseNet201, the compressing 
algorithm was applied, and the compressed artificial 
neural network was mounted on the NVIDIA Jetson 
Xavier embedded system to assess and compare 
performance. In addition, the compression and 
acceleration performance was evaluated using 
TensorFlow Lite’s model deployment optimization 
feature when deploying on the embedded system.

6.2. Application and results of pruning 
algorithm
Gradual pruning was applied to the pre-trained 
DenseNet201 with various pruning ratios ranging 
from 50% to 99%. Si=ti=0 and n was set to 80% of 
the total steps (250,000) to allow for fine-tuning 
in the later stages. As suggested by Zhu et al. [13], 

the learning rate used in the original training was 
multiplied by 1/10 (10-4, 10-5, 10-6).

As shown in Table 3, it is observed that pruning 
the weights of DenseNet201 by up to 90% allows 
for approximately 6 times reduction in model size 
without a decrease in accuracy. In particular, by 
applying pruning, using a smaller learning rate, and 
allowing fine-tuning in the later stages of training, a 
slight improvement in neural network performance 
was observed. However, when the pruning ratio was 
increased to 99%, there was a dramatic 23.6% decrease 
in neural network performance.

6.3. Application and results of quantization 
algorithm
The weight quantization of DenseNet201 was 
performed using post-static quantization (INT8) and 
QAT (INT8*). In the case of QAT, the same training 

Table 2. DenseNet201 training parameters and results. For training, the TensorFlow framework, CIFAR-10 dataset, 
and NVIDIA RTX 2070SUPER GPU are used.

Epochs (Steps) 50 (312,500)
Batch size 8
Optimizer Stochastic gradient descent (Nesterov, momentum = 0.9)

Learning rate

10-3 1 ≤ epoch ≤ 25

10-4 26 ≤ epoch ≤ 38

10-5 39 ≤ epoch ≤ 50

Top-1 accuracy 95.15%
Model size 70 MB

Table 3. DenseNet201 gradual pruning results. Gradual pruning compressed the neural network, and an increase or 
decrease in accuracy and compression ratio was specified.

Sparsity (%) Top-1 accuracy (%) Size (MB)
0 95.15 (+0%) 70 (100%)

50 97.44 (+2.29%) 51 (73%)
60 97.25 (+2.10%) 41 (59%)
70 97.41 (+2.26%) 32 (46%)
80 96.91 (+1.76%) 22 (31%)
90 95.43 (+0.28%) 12 (17%)
95 92.23 (-2.92%) 6.2 (8.9%)
99 71.56 (-23.6%) 2.2 (3.1%)
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parameters of the original DenseNet201 were applied. 
When using INT8 for weight data precision, it was 
observed that the size of the artificial neural network 
was reduced by approximately 73% compared to the 
existing FP32. Also, post-static quantization resulted in 
a 1.92% decrease in accuracy compared to the original 
artificial neural network, but by applying QAT, the 
weights were quantized, and additional training was 
performed with smaller learning rates (10-4, 10-5, 10-6) 
than those used in the original training. This approach 
led to a 1.94% increase in accuracy. Finally, taking 
advantage of the conversion from floating-point to 
fixed-point operations, the inference time on NVIDIA 
Jetson Xavier’s CPU was reduced by approximately 
40%, from 1,274.03 ms to 768.83 ms, and the results 
are summarized in Table 4. Inference time was 
measured as the average time taken for a total of 50 
inferences with a batch size set to 1.

6.4. Application and results of knowledge 
distillation algorithm
For the application of the knowledge distillation 
technique [14], DenseNet201 was selected as the “teacher” 
and DenseNet121 as the “student”, as shown in Figure 
4. The first batch normalization layer of the DenseBlock,
which is a component of each neural network, was
configured to learn the activation boundary.

Initialization was applied from 1 to 5 times, and the 
accuracy was compared, with the total number of epochs 
set to 50, including initialization. The experimental 
results showed that applying the knowledge distillation 
algorithm more than once resulted in a similar increase 
in accuracy, as shown in Figure 5.

Furthermore, Table 5  shows that applying 
knowledge distillation led to a performance increase 
of up to 3.5% compared to not applying it, with 
the Initialization ×4 case achieving the highest 
performance improvement. The inference time on the 

Table 4. Static quantization and QAT result

Size (MB) Top-1 accuracy (%) Latency (ms)
FP32 70 (100%) 95.15 (+0%) 1,274.03
INT8 19 (27%) 93.23 (-1.92%) 763.93
INT8* 19 (27%) 97.09% (+1.94%) 768.83

Figure 4. Hidden layers for knowledge distillation. 
The “student” network refers to the feature from the 
batch normalization layers in the dense blocks in the 
“teacher” network.

Figure 5. Knowledge distillation result. The knowledge distillation algorithm 
improved the accuracy of DenseNet121 using DenseNet201.
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NVIDIA Jetson Xavier’s CPU was deduced to 658.06 
ms when using knowledge distillation, which is a 
48.3% reduction compared to the original DenseNet201 
(1,274.03 ms).

6.5. Results of applying the integrated 
compressing algorithms

Each of the aforementioned compressing algorithms 
can be used independently to compress a neural 
network, and a proper integration of these algorithms 
can potentially yield better performance. To integrate 
the three aforementioned compressing algorithms, a 
compressed artificial neural network was implemented 
using knowledge distillation. Subsequently, pruning 
was applied to further compress the model, creating a 
model with sparse weights. Finally, QAT was applied to 
convert the model from 32-bit floating-point weights to 

8-bit weights. If pruning is applied before quantization,
the weights, which were originally represented as
precise floating-point values, will be quantized to
integers. Pruning such integer weights, starting with the
lowest absolute values, would lead to a significant drop
in the neural network’s performance. For this reason,
the TensorFlow framework used in this study does
not support applying pruning algorithms to quantized
artificial neural networks. Therefore, in this study,
integrated compressed artificial neural networks were
generated by applying pruning to the DenseNet121
model that had undergone knowledge distillation.

The pruning process for the DenseNet121 model 
with the knowledge distillation was conducted in the 
same manner as the approach applied to DenseNet201. 
Learning rates were reduced as pruning progressed, 
enabling pruning and additional training to occur 

Table 5. Knowledge distillation results in terms of size, accuracy, and latency. The performance of DenseNet121 has 
been improved using DenseNet201 by 3.5%.

Size (MB) Top-1 accuracy (%) Latency (ms)
Teacher 70 (100%) 95.15 1,273.03
Student 29 (41%) 88.0 → 91.5 (+3.5%) 658.06

Table 6. DenseNet121 (knowledge distilled) pruning result

Sparsity (%) Top-1 accuracy (%) Size (MB)
0 91.50 (+0%) 29 (100%)
50 92.42 (+0.92%) 20 (69%)
60 91.91 (+0.41%) 16 (55%)
70 91.36 (-0.14%) 12 (41%)
80 89.93 (-1.57%) 8.0 (28%)
90 85.88 (-5.62%) 4.3 (15%)
95 78.26 (-13.2%) 2.4 (8.2%)
99 10.00 (-81.5%) 0.9 (3.0%)

Table 7. The performance of DenseNet121 on the embedded system. The network has been compressed by 
knowledge distillation, pruning, and QAT.

Sparsity (%) Size (MB) Top-1 accuracy (%) Latency (ms)
80 4.6 93.35 499.26
90 2.8 88.60 487.65
95 1.9 85.54 497.30
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simultaneously. This allowed for the preservation or 
improvement of the neural network’s performance up 
to a certain pruning ratio. However, when the pruning 
ratio exceeded 80%, a significant drop in accuracy was 
observed, as shown in Table 6.

In QAT, pruning ratios of 80%, 90%, and 95% were 
applied to the compressed artificial neural networks. 
The results are presented in Table 7.

Finally, the artificial neural network resulting from 
applying 80% pruning and QAT to the DenseNet121 
model with knowledge distillation was selected as 
the final compressed artificial neural network. The 
inference time was measured on NVIDIA Jetson 
Xavier’s CPU, and the results are shown in Table 8. 
The integrated compressed artificial neural network, 
which had all three compressing algorithms applied, 
minimized accuracy degradation while reducing its 
size to 4.6 MB, which is 15.2 times smaller than the 
original. Inference time improved by 60.8% compared 
to the pre-compressing state (CPU*). It was noted that 
the GPU-based deployment and performance evaluation 
for the compressed artificial neural networks were 
not performed due to limited support for compressing 
algorithms in TensorFlow Lite and NVIDIA TensorRT. 
For comparison, latency results for the pre-compressing 
artificial neural network were added when deployed on 
NVIDIA Jetson Xacier’s GPU in the table.

The first row (CPU) and the second row (GPU) 
show the results of running the uncompressed 
DenseNet201 on an embedded system, while the third 
row (CPU*) represents the results of running the 
compressed artificial neural network that underwent 
knowledge distillation using DenseNet121 (“student”) 
and applying pruning and QAT on DenseNet201 

(“teacher”) on the same embedded system.

7. Conclusion
In this study, the theoretical concepts of pruning, 
quantization, and knowledge distillation compressing 
a lgor i thms were  summarized  and appl ied  to 
convolutional artificial neural networks to analyze 
their effects. The most crucial aspect of applying 
compressing algorithms to artificial neural networks 
is preserving the existing accuracy. In this study, 
the aforementioned algorithms were applied to a 
convolutional neural network with minimal accuracy 
loss. Firstly, in the case of pruning, the artificial neural 
network can be compressed by up to 5.83 times without 
any accuracy loss, and it was possible to achieve an 
11.3 times reduction in size with only a 2.92% accuracy 
drop. Secondly, by applying post-static quantization 
and QAT, a compressed artificial neural network that 
is 3.7 times smaller was created and the inference time 
on embedded systems was reduced by 39.7%. Thirdly, 
in knowledge distillation, DenseNet201 was used to 
enhance the accuracy of DenseNet121 by 3.5% and 
utilized a 2.41 times smaller artificial neural network 
than DenseNet201, resulting in a 46.6% reduction 
in inference time on embedded systems. Lastly, by 
integrating the three compressing algorithms while 
preserving the performance of the artificial neural 
network, a compressed neural network that is 15.2 
times smaller in size was created and a 60.8% reduction 
in inference time was achieved. In the future, the 
authors plan to apply the aforementioned compressing 
algorithms to object detection algorithms and mount 
them on Field Programmable GateArray (FPGA) for 
low-power, high-performance object detection tasks.

Table 8. Comparison of performance of the neural networks before and after model compression

Device Size (MB) Top-1 accuracy (%) Latency (ms)
CPU 70 95.15 1,274.03
GPU 70 95.15 366.85
CPU* 4.6 93.35 499.26
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