
Information Engineering and Applied Computing
2022 Volume 1, Issue 1

ISSN: 2630-4619

-16-

Neural Network Model Compression Algorithms for
Image Classification in Embedded Systems
Heejung Shin, Hyondong Oh*

Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea

*Corresponding author: Hyondong Oh, h.oh@unist.ac.kr

Copyright: © 2022 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC

BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

A b s t r a c t

This paper introduces model compression algorithms that make a deep neural
network smaller and faster for embedded systems. The model compression
algorithms can be largely categorized into pruning, quantization, and
knowledge distillation. In this study, gradual pruning, quantization aware
training, and knowledge distillation which learns the activation boundary
in the hidden layer of the teacher neural network are integrated. As a large
deep neural network is compressed and accelerated by these algorithms,
embedded computing boards can run the deep neural network much faster
with less memory usage while preserving reasonable accuracy. To evaluate
the performance of the compressed neural networks, we evaluate the size,
latency, and accuracy of the deep neural network, DenseNet201, for image
classification with the CIFAR-10 dataset on the NVIDIA Jetson Xavier.

K e y w o r d s

Deep learning
Model compression
Pruning
Quantization
Knowledge distillation
Embedded system

1. Introduction
To perform autonomous decision-making, unmanned
vehicles need to rapidly perceive their surroundings by
utilizing information acquired from various sensors. In
particular, visual information from cameras contains
high-dimensional data and can be effectively utilized.
By employing image processing algorithms, it is
possible to automatically extract and analyze features
from the given visual data, enabling a high-level

understanding of the surrounding environment, such as
object detection and classification.

S ince AlexNet won the ImageNet ob jec t
classification competition in 2014 [1,2], convolutional
neura l ne tworks (CNNs) have demons t ra ted
exceptional performance in the field of computational
image processing. The use of residual connections
has addressed the problem of gradient vanishing,
which occurs as the number of hidden layers in an

2022 Volume 1, Issue 1 Neural Network Model Compression Algorithms for Image Classification in Embedded Systems

-17-

artificial neural network increases [3]. With the residual
connection structure resolving the gradient vanishing
issue, research has focused on designing neural
networks with more hidden layers and weights to
achieve higher accuracy. Recent developments, such
as the Vision Transformer [4], involve artificial neural
networks with approximately 630 million weights.

These enlarged neural networks come with a
significant computational cost compared to other
algorithms, making high-performance computing
devices such as GPUs essential. However, embedding
high-performance computing devices into low-power
embedded systems presents numerous challenges.
Additionally, most embedded systems have limited
memory, making it impossible to deploy artificial neural
networks in some cases. Therefore, for systems like
small autonomous unmanned vehicles that have limited
computing power but require real-time performance
or drones with constrained mission durations, efficient
power management, compression, and acceleration of
artificial neural networks are essential [5]. As a result,
recent research efforts have been actively focused on
compressing and accelerating artificial neural networks
for deployment in embedded systems [6-8].

The goal of artificial neural network compression
and acceleration algorithms is to develop compressed
and accelerated artificial neural networks while
preserving the performance of existing neural networks
as much as possible. There are three primary algorithms
for artificial neural network optimization:

(1) Pruning: Removes weights from the neural
network that do not significantly impact its
accuracy [9,10].

(2) Quantization: Reduces the data precision of
artificial neural network weights to match the
target hardware effectively [11].

(3) Knowledge distillation: Transfers knowledge
from a larger neural network to a smaller one,
enhancing the accuracy of a smaller model [12].

All three types of algorithms have been reported
to effectively compress and accelerate artificial neural

networks while preserving their existing accuracy [8,12-14].
However, there is limited research comparing and analyzing
the performance of these three optimizing algorithms when
applied together in embedded systems.

Therefore, this paper summarizes artificial neural
network compression and acceleration algorithms
theoretically and applies these algorithms collectively
to the same environment and convolutional network
for image classification tasks. Additionally, the
performance of the compressed artificial neural
network is compared and analyzed on the CPU of the
embedded system, NVIDIA Jetson Xavier, to provide
insights and comparisons.

2 . Trends in the deve lopment o f
convolutional neural networks
The AlexNet, which won the ImageNet competition in
2012, consists of 8 layers, including 5 convolutional
layers and 3 fully connected layers, by combining
various convolutional filter sizes of 11×11,5×5, and 3×3.
AlexNet demonstrated that having a deeper structure, in
contrast to the LeNet composed of only 2 convolutional
layers [15], can lead to better performance [1]. Building
upon the research findings from AlexNet, VGGNet
systematically increased the depth of CNNs. VGGNet
constructed 19 deep convolutional layers using only 3×3
convolutional filters and achieved second place in the
ImageNet competition [16]. Following VGGNet, there
were numerous attempts to improve the performance
of artificial neural networks by staking neural
network hidden layers deeper. However, this approach
encountered limitations due to the problem of gradient
vanishing when constructing neural networks with
depths beyond a certain threshold.

Nevertheless, in 2015, ResNet was developed and
used a residual connection structure to address the
gradient vanishing problem. ResNet, by employing
the residual connection structure, constructed a neural
network that was 8 times deeper than the previous
VGGNet and won the 2015 ImageNet competition [3].

2022 Volume 1, Issue 1 Neural Network Model Compression Algorithms for Image Classification in Embedded Systems

-18-

DenseNet further advanced this residual connection
structure by not only using it to add features from
hidden layers but also concatenating the features
themselves [17]. The aforementioned research trends
in image classification aimed at increasing accuracy
by making neural networks deeper and with more
convolutional filters. However, these neural networks
posed challenges for deployment on mobile devices
such as smartphones or embedded systems due to their
size and computational demands. Therefore, this study
explored the feasibility of applying compression and
acceleration algorithms to the DenseNet-based neural
networks, known for their superior performance among
the aforementioned convolutional artificial neural
networks, in embedded systems.

3. Pruning
Artificial neural networks are composed of a large
number of weights, ranging from millions to even
billions. A trained artificial neural network consists of
weights with small absolute values, and it is known
that among these weights, there are weights with low
significance for inference [18-20]. Therefore, one way to
compress artificial neural networks is to selectively
remove weights with low significance, and this
algorithm is called pruning.

Pruning algorithms can be broadly categorized
into two types: unstructured pruning and structured
pruning. The former sets the values of weights
that are considered unnecessary for inference to 0.
As a result, sparse weight matrices are generated,
and artificial neural networks can be compressed
using data structures such as coordinate list (COO),
compressed sparse row (CSR), and compressed
sparse column (CSC). The latter applies pruning to
various components of the artificial neural networks,
such as convolutional filters and individual hidden
layers, rather than individual weights. It proceeds by
completely removing unnecessary weights that are
part of these components. Therefore, with structured
pruning, it is possible to compress artificial neural

networks without the need for data structures such
as COO, CSR, and CSC. However, this algorithm
may have difficulty preserving accuracy compared to
unstructured pruning, as it may also remove significant
weights within convolutional filters or specific hidden
layers.

When applying pruning algorithms to artificial
neural networks, the most crucial consideration is to
preserve the model’s accuracy as much as possible.
If too many weights are pruned at once, the accuracy
of the artificial neural network can be severely
compromised. Thus, most algorithms follow a process
where a small portion of weights is pruned (Figure
1A) and then undergoes a retraining process. The final
compressed model is created by repeatedly applying the
pruning algorithm in the same manner to the retrained
neural network.

However, this iterative pruning and retraining
structure has the drawback of high training costs in
creating compressed artificial neural networks. To
address this issue, a gradual pruning algorithm (Figure
1B) that integrates pruning and retraining has been
proposed [13]. Gradual pruning is a member of the
unstructured pruning family of algorithms, and it allows
the creation of compressed artificial neural networks
with minimal training costs while maximizing accuracy
preservation. The study proposed a pruning scheduling
as shown in equation (1) [13].

 for

(1)

Here, t represents the point in the training process
when the pruning algorithm is applied, and the interval
during training when the pruning algorithm is applied
can be determined by specifying t0 and n. Si is the
initial sparsity ratio typically set to 0 when applied
to the initial artificial neural network, while Sf is the
final sparsity ratio that the artificial neural network
will eventually have. Equation (1) shows that, through

2022 Volume 1, Issue 1 Neural Network Model Compression Algorithms for Image Classification in Embedded Systems

-19-

gradient descent, when weights are updated, St % of
the total weights are pruned. In this study, gradual
pruning was used on compressing DenseNet201
without a decrease in accuracy.

Figure 1. Flow chart of the pruning process. (a) shows a gen-
eral pruning algorithm that takes a long time to get compressed
neural networks; (b) combines pruning and training processes to
obtain compressed neural networks in a short time.

4. Quantization
The weights of neural networks are represented in a
32-bit floating-point format, which allows for precise
decimal representation, and they are updated through
error backpropagation and gradient descent. While this
floating-point representation provides a wider range
of representable numbers compared to the fixed-point
representation, it is considerably slower in computation
speed than fixed-point representation, where real
number operations can be replaced with integer
operations. Hence, it is possible to accelerate the
inference of artificial neural networks by converting the
floating-point weights of trained neural networks into
fixed-point representations. In addition, representing
weights originally in 32 bits as 16 bits or 8 bits reduces
the size of the neural network. For example, in the case
of DenseNet201, which has approximately 18 million
weights, if the weights are represented in 32 bits, the
model size would be around 70 MB. However, by using
8-bit weights, the model size can be reduced to only 19
MB. Algorithms that leverage these characteristics of
computer computation and structure to enable neural

network compression and acceleration are known as
quantization.

Figure 2 illustrates the process of quantizing 32-
bit floating-point values into 8-bit integer values.
Symmetric linear quantization is performed using
equations (2) and (3).

 where

　(2)

 (3)

Here, x represents the input or output values of the
quantized weights or activation functions of the neural
networks and α,β represents the range of x. In the case
of symmetric linear quantization, it has the relationship
α=–β. s is the scale factor used to convert values
expressed in different bit widths and can be calculated
using equation (2).

Figure 2. Symmetric linear quantization. The symmetric linear
quantization algorithm maps 32-bit floating point representation
to 8-bit integer representation.

When applying quantization algorithms to neural
networks, just like pruning algorithms, it is essential to
preserve the accuracy of the original network as much
as possible. In the case of quantization from 32 bits to
16 bits, the range of representable numbers decreases
but does not significantly impact the neural network’s
accuracy. However, when quantizing to 8 bits, the
range of representable numbers decreases significantly
compared to 32 bits, which can lead to a substantial
reduction in the neural network’s accuracy. Therefore,
the most critical aspect of quantization algorithms
for preserving the accuracy of the original neural

2022 Volume 1, Issue 1 Neural Network Model Compression Algorithms for Image Classification in Embedded Systems

-20-

network is selecting the value of for quantization.
Quantization algorithms are classified into three main
categories according to the method used to determine
the parameter s, as shown in Table 1: dynamic
quantization, post-static quantization, and quantization-
aware training.

The first is dynamic quantization, where the
given weight matrix is quantized using equation (2).
Quantization of the input and output values of activation
functions is performed in real-time by calculating s
while the artificial neural network operates in its actual
working environment. Dynamic quantization has
the disadvantage of being slower compared to other
quantization algorithms because it quantizes the input
and output values of activation functions each time the
artificial neural network runs. The second quantization
algorithm is post-static quantization, which is different
from dynamic quantization. In post-static quantization,
a representative subset of data is input into the artificial
neural network to calculate the value in advance for
quantizing the input and output values of activation
functions when applying the quantization algorithm.
Post static quantization does not require real-time
quantization during the operation of the artificial neural
network, leading to faster inference speed compared to
dynamic quantization. The final quantization algorithm
is quantization-aware training (QAT), where the
quantized artificial neural network is retrained using
all the data used during the network’s original training.
QAT is the most accurate among the three algorithms
and ensures a similar inference speed as post-static
quantization. However, it requires additional training
for creating compressed neural networks. The accuracy
of post-static quantization and QAT are compared, and
the interference acceleration performance on embedded

systems is verified in this study.

5. Knowledge distillation
For systems with limited computing resources, such as
embedded systems, the design of compressed artificial
neural networks that are suitable for embedding and
smooth operation of artificial neural networks is
essential. Yet, these networks often have an insufficient
number of weights, making it challenging to achieve
robust performance. Hence, a learning method is
required to maximize the performance of these artificial
neural networks.

To address this, knowledge distillation was
proposed to enhance the performance of compressed
artificial neural networks using the concept of “teacher
and student” [12]. The “teacher” is a high-performance
artificial neural network with more weights compared
to the “student”, while the “student” is relatively
smaller in size and has lower performance compared
to the “teacher”. As shown in Figure 3, the “student”
makes different predictions from the “teacher” for the
same input data, and the “student” learns by referring
to the predicted values of the “teacher” using equations
(4) to (7).

　(4)

　(5)

(6)

 where .
(7)

Table 1. Quantization algorithms

Latency Accuracy Data requirement
Dynamic quantization Low Best No
Post-static quantization Lowest Good Partial
Quantization-aware training Lowest Best All

2022 Volume 1, Issue 1 Neural Network Model Compression Algorithms for Image Classification in Embedded Systems

-21-

Here, α and T are hyperparameters, where α is an
indicator of how much the “student” should reference
the prediction of “teacher” during learning, and T
adjusts the shape of the distribution of predictions
between the “teacher” and “student” using equations
(5) and (6). ys and yt are the outputs of the “student”
and “teacher” networks, respectively, while ytrug is
the ground truth data for the input data. LKLD is the
loss function calculated by using Kullback-Leibler
divergence between the distributions of predictions by
the “teacher” and “student”.

Figure 3. Knowledge distillation. The student network refers to
the output of the teacher network for better training results.

Unl ike t radi t ional knowledge dis t i l la t ion
algorithms that only use the predictions from the final
layer of the “teacher”, there are knowledge distillation
algorithms that allow the “student” to reference the
predictions from the “teacher’s” hidden layers as well.
This generally leads to better performance compared
to traditional knowledge distillation, and it can be
used not only for classification problems but also for
regression problems. Heo et al. proposed a knowledge
distillation technique where the “student” mimics the
activation boundary of neurons in the hidden layer of
the “teacher” artificial neural network using equations
(8) and (9). This approach significantly improved the
accuracy of the “student” model [14].

(8)
where

(9)

Here, T(·) and S(·) are the output values of the
activation functions of the “teacher” and “student”,
respectively, and I is the input data. σ(·) is the rectified
linear unit (ReLU) activation function and μ1 is
the unit margin vector. r(·) is a connector function
proposed by Romero et al. [21], which serves to align the
dimensions of the outputs of “teacher” and “student”.
⊙ denotes element-wise multiplication, and ρ(·) is a
function that calculates the activation state of neurons
in the neural network. This knowledge distillation
algorithm is divided into two main phases: initialization
and training. Initialization is the phase in which the
“student” forms activation boundaries similar to those
of the “teacher”, and does not refer to ytrue. After the
initialization phase, the “student” model continues to
learn without the assistance of the “teacher”, using
the entire training dataset. In this study, an algorithm
from Heo et al. was used to improve the performance
of the smaller neural network model, “student”
(DenseNet121), with the guidance of a larger model,
“teacher” (DenseNet201) [14].

6. Neural network compressing results
6.1. Artificial neural network training
parameters and target neural network
configuration
In this study, DenseNet201 was trained using
TensorFlow on the CIFAR-10 dataset for image
classification. The three aforementioned compressing
algorithms were applied to the trained DenseNet201.
The training configurations for DenseNet201 are shown
in Table 2.

Since DenseNet is optimized for the ImageNet
dataset, the CIFAR-10 was resized to 224×224, the
same size as the ImageNet dataset, and the values of
each channel were normalized to be within the range of
0 and 1. Data augmentation was also applied [22].

Top-N Accuracy is an evaluation metric commonly
used in image classification problems. It considers
a prediction to be correct if the top N values in the

2022 Volume 1, Issue 1 Neural Network Model Compression Algorithms for Image Classification in Embedded Systems

-22-

discrete probability distribution output from the final
layer of the neural network contain the correct label.

After training DenseNet201, the compressing
algorithm was applied, and the compressed artificial
neural network was mounted on the NVIDIA Jetson
Xavier embedded system to assess and compare
performance. In addition, the compression and
acceleration performance was evaluated using
TensorFlow Lite’s model deployment optimization
feature when deploying on the embedded system.

6.2. Application and results of pruning
algorithm
Gradual pruning was applied to the pre-trained
DenseNet201 with various pruning ratios ranging
from 50% to 99%. Si=ti=0 and n was set to 80% of
the total steps (250,000) to allow for fine-tuning
in the later stages. As suggested by Zhu et al. [13],

the learning rate used in the original training was
multiplied by 1/10 (10-4, 10-5, 10-6).

As shown in Table 3, it is observed that pruning
the weights of DenseNet201 by up to 90% allows
for approximately 6 times reduction in model size
without a decrease in accuracy. In particular, by
applying pruning, using a smaller learning rate, and
allowing fine-tuning in the later stages of training, a
slight improvement in neural network performance
was observed. However, when the pruning ratio was
increased to 99%, there was a dramatic 23.6% decrease
in neural network performance.

6.3. Application and results of quantization
algorithm
The weight quantization of DenseNet201 was
performed using post-static quantization (INT8) and
QAT (INT8*). In the case of QAT, the same training

Table 2. DenseNet201 training parameters and results. For training, the TensorFlow framework, CIFAR-10 dataset,
and NVIDIA RTX 2070SUPER GPU are used.

Epochs (Steps) 50 (312,500)
Batch size 8
Optimizer Stochastic gradient descent (Nesterov, momentum = 0.9)

Learning rate

10-3 1 ≤ epoch ≤ 25

10-4 26 ≤ epoch ≤ 38

10-5 39 ≤ epoch ≤ 50

Top-1 accuracy 95.15%
Model size 70 MB

Table 3. DenseNet201 gradual pruning results. Gradual pruning compressed the neural network, and an increase or
decrease in accuracy and compression ratio was specified.

Sparsity (%) Top-1 accuracy (%) Size (MB)
0 95.15 (+0%) 70 (100%)

50 97.44 (+2.29%) 51 (73%)
60 97.25 (+2.10%) 41 (59%)
70 97.41 (+2.26%) 32 (46%)
80 96.91 (+1.76%) 22 (31%)
90 95.43 (+0.28%) 12 (17%)
95 92.23 (-2.92%) 6.2 (8.9%)
99 71.56 (-23.6%) 2.2 (3.1%)

2022 Volume 1, Issue 1 Neural Network Model Compression Algorithms for Image Classification in Embedded Systems

-23-

parameters of the original DenseNet201 were applied.
When using INT8 for weight data precision, it was
observed that the size of the artificial neural network
was reduced by approximately 73% compared to the
existing FP32. Also, post-static quantization resulted in
a 1.92% decrease in accuracy compared to the original
artificial neural network, but by applying QAT, the
weights were quantized, and additional training was
performed with smaller learning rates (10-4, 10-5, 10-6)
than those used in the original training. This approach
led to a 1.94% increase in accuracy. Finally, taking
advantage of the conversion from floating-point to
fixed-point operations, the inference time on NVIDIA
Jetson Xavier’s CPU was reduced by approximately
40%, from 1,274.03 ms to 768.83 ms, and the results
are summarized in Table 4. Inference time was
measured as the average time taken for a total of 50
inferences with a batch size set to 1.

6.4. Application and results of knowledge
distillation algorithm
For the application of the knowledge distillation
technique [14], DenseNet201 was selected as the “teacher”
and DenseNet121 as the “student”, as shown in Figure
4. The first batch normalization layer of the DenseBlock,
which is a component of each neural network, was
configured to learn the activation boundary.

Initialization was applied from 1 to 5 times, and the
accuracy was compared, with the total number of epochs
set to 50, including initialization. The experimental
results showed that applying the knowledge distillation
algorithm more than once resulted in a similar increase
in accuracy, as shown in Figure 5.

Furthermore, Table 5 shows that applying
knowledge distillation led to a performance increase
of up to 3.5% compared to not applying it, with
the Initialization ×4 case achieving the highest
performance improvement. The inference time on the

Table 4. Static quantization and QAT result

Size (MB) Top-1 accuracy (%) Latency (ms)
FP32 70 (100%) 95.15 (+0%) 1,274.03
INT8 19 (27%) 93.23 (-1.92%) 763.93
INT8* 19 (27%) 97.09% (+1.94%) 768.83

Figure 4. Hidden layers for knowledge distillation.
The “student” network refers to the feature from the
batch normalization layers in the dense blocks in the
“teacher” network.

Figure 5. Knowledge distillation result. The knowledge distillation algorithm
improved the accuracy of DenseNet121 using DenseNet201.

2022 Volume 1, Issue 1 Neural Network Model Compression Algorithms for Image Classification in Embedded Systems

-24-

NVIDIA Jetson Xavier’s CPU was deduced to 658.06
ms when using knowledge distillation, which is a
48.3% reduction compared to the original DenseNet201
(1,274.03 ms).

6.5. Results of applying the integrated
compressing algorithms

Each of the aforementioned compressing algorithms
can be used independently to compress a neural
network, and a proper integration of these algorithms
can potentially yield better performance. To integrate
the three aforementioned compressing algorithms, a
compressed artificial neural network was implemented
using knowledge distillation. Subsequently, pruning
was applied to further compress the model, creating a
model with sparse weights. Finally, QAT was applied to
convert the model from 32-bit floating-point weights to

8-bit weights. If pruning is applied before quantization,
the weights, which were originally represented as
precise floating-point values, will be quantized to
integers. Pruning such integer weights, starting with the
lowest absolute values, would lead to a significant drop
in the neural network’s performance. For this reason,
the TensorFlow framework used in this study does
not support applying pruning algorithms to quantized
artificial neural networks. Therefore, in this study,
integrated compressed artificial neural networks were
generated by applying pruning to the DenseNet121
model that had undergone knowledge distillation.

The pruning process for the DenseNet121 model
with the knowledge distillation was conducted in the
same manner as the approach applied to DenseNet201.
Learning rates were reduced as pruning progressed,
enabling pruning and additional training to occur

Table 5. Knowledge distillation results in terms of size, accuracy, and latency. The performance of DenseNet121 has
been improved using DenseNet201 by 3.5%.

Size (MB) Top-1 accuracy (%) Latency (ms)
Teacher 70 (100%) 95.15 1,273.03
Student 29 (41%) 88.0 → 91.5 (+3.5%) 658.06

Table 6. DenseNet121 (knowledge distilled) pruning result

Sparsity (%) Top-1 accuracy (%) Size (MB)
0 91.50 (+0%) 29 (100%)
50 92.42 (+0.92%) 20 (69%)
60 91.91 (+0.41%) 16 (55%)
70 91.36 (-0.14%) 12 (41%)
80 89.93 (-1.57%) 8.0 (28%)
90 85.88 (-5.62%) 4.3 (15%)
95 78.26 (-13.2%) 2.4 (8.2%)
99 10.00 (-81.5%) 0.9 (3.0%)

Table 7. The performance of DenseNet121 on the embedded system. The network has been compressed by
knowledge distillation, pruning, and QAT.

Sparsity (%) Size (MB) Top-1 accuracy (%) Latency (ms)
80 4.6 93.35 499.26
90 2.8 88.60 487.65
95 1.9 85.54 497.30

2022 Volume 1, Issue 1 Neural Network Model Compression Algorithms for Image Classification in Embedded Systems

-25-

simultaneously. This allowed for the preservation or
improvement of the neural network’s performance up
to a certain pruning ratio. However, when the pruning
ratio exceeded 80%, a significant drop in accuracy was
observed, as shown in Table 6.

In QAT, pruning ratios of 80%, 90%, and 95% were
applied to the compressed artificial neural networks.
The results are presented in Table 7.

Finally, the artificial neural network resulting from
applying 80% pruning and QAT to the DenseNet121
model with knowledge distillation was selected as
the final compressed artificial neural network. The
inference time was measured on NVIDIA Jetson
Xavier’s CPU, and the results are shown in Table 8.
The integrated compressed artificial neural network,
which had all three compressing algorithms applied,
minimized accuracy degradation while reducing its
size to 4.6 MB, which is 15.2 times smaller than the
original. Inference time improved by 60.8% compared
to the pre-compressing state (CPU*). It was noted that
the GPU-based deployment and performance evaluation
for the compressed artificial neural networks were
not performed due to limited support for compressing
algorithms in TensorFlow Lite and NVIDIA TensorRT.
For comparison, latency results for the pre-compressing
artificial neural network were added when deployed on
NVIDIA Jetson Xacier’s GPU in the table.

The first row (CPU) and the second row (GPU)
show the results of running the uncompressed
DenseNet201 on an embedded system, while the third
row (CPU*) represents the results of running the
compressed artificial neural network that underwent
knowledge distillation using DenseNet121 (“student”)
and applying pruning and QAT on DenseNet201

(“teacher”) on the same embedded system.

7. Conclusion
In this study, the theoretical concepts of pruning,
quantization, and knowledge distillation compressing
a lgor i thms were summarized and appl ied to
convolutional artificial neural networks to analyze
their effects. The most crucial aspect of applying
compressing algorithms to artificial neural networks
is preserving the existing accuracy. In this study,
the aforementioned algorithms were applied to a
convolutional neural network with minimal accuracy
loss. Firstly, in the case of pruning, the artificial neural
network can be compressed by up to 5.83 times without
any accuracy loss, and it was possible to achieve an
11.3 times reduction in size with only a 2.92% accuracy
drop. Secondly, by applying post-static quantization
and QAT, a compressed artificial neural network that
is 3.7 times smaller was created and the inference time
on embedded systems was reduced by 39.7%. Thirdly,
in knowledge distillation, DenseNet201 was used to
enhance the accuracy of DenseNet121 by 3.5% and
utilized a 2.41 times smaller artificial neural network
than DenseNet201, resulting in a 46.6% reduction
in inference time on embedded systems. Lastly, by
integrating the three compressing algorithms while
preserving the performance of the artificial neural
network, a compressed neural network that is 15.2
times smaller in size was created and a 60.8% reduction
in inference time was achieved. In the future, the
authors plan to apply the aforementioned compressing
algorithms to object detection algorithms and mount
them on Field Programmable GateArray (FPGA) for
low-power, high-performance object detection tasks.

Table 8. Comparison of performance of the neural networks before and after model compression

Device Size (MB) Top-1 accuracy (%) Latency (ms)
CPU 70 95.15 1,274.03
GPU 70 95.15 366.85
CPU* 4.6 93.35 499.26

2022 Volume 1, Issue 1 Neural Network Model Compression Algorithms for Image Classification in Embedded Systems

-26-

Disclosure statement
The authors declare no conflict of interest.

Funding
This work was supported by Theater Defense Research Center funded by Defense Acquisition
Program Administration under Grant UD200043CD.

References

[1] Krizhevsky A, Sutskever I, Hinton GE, 2017, ImageNet Classification with Deep Convolutional Neural Networks.
Communications of the ACM, 60(6): 84–90. https://doi.org/10.1145/3065386

[2] Deng J, Dong W, Socher R, et al. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 15–20, 2009: ImageNet: A Large-scale Hierarchical Image Database. 2009, Miami. https://doi.org/10.1109/
CVPR.2009.5206848

[3] He K, Zhang X, Ren S, et al. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27–
30, 2016: Deep Residual Learning for Image Recognition. 2016, Las Vegas. https://doi.org/10.1109/CVPR.2016.90

[4] Dosovitskiy A, Beyer L, Kolesnikov A, et al. The 9th International Conference on Learning Representations (ICLR
2021), May 3–7, 2021: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2021, Vienna.
https://openreview.net/forum?id=YicbFdNTTy.

[5] Oh S, Kim H, Cho S, et al., 2020, Development of a Compressed Deep Neural Network for Detecting Defected
Electrical Substation Insulators Using a Drone. Journal of Institute of Control, Robotics and Systems, 26(11): 884–
890. https://doi.org/10.5302/j.icros.2020.20.0117

[6] Howard AG, Zhu M, Chen B, et al., 2017, Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. arXiv: 1704.04861. https://arxiv.org/abs/1704.04861

[7] Uetsuki T, Okuyama Y, Shin J. 2021 IEEE 14th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), December 20–23, 2021: CNN-Based End-to-End Autonomous Driving on FPGA Using
TVM and VTA. 2021, Singapore. https://doi.org/10.1109/MCSoC51149.2021.00028

[8] Han S, Mao H, Dally WJ, 2015, Deep Compression: Compressing Deep Neural Network with Pruning, Trained
Quantization and Huffman Coding. arXiv: 1510.00149. https://arxiv.org/abs/ 1510.00149

[9] LeCun Y, John D, Sara S, 1989, Optimal Brain Damage. Advances in Neural Information Processing Systems. https://
papers.nips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277 658-Abstract.html

[10] Hassibi B, Stork D, 1992, Second Order Derivatives for NetworkPruning: Optimal Brain Surgeon. Advances in
Neural Information Processing Systems. https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3
ba8573050-Abstract.html

[11] Wu H, Judd P, Zhang X, et al., Integer Quantization for Deep Learning Inference: Principles and Empirical
Evaluation. arXiv, preprint: 2004.09602. https://arxiv.org/abs/2004.09602

[12] Hinton GE, Vinyals O, Dean J, 2014, Distilling the Knowledge in a Neural Network. Advances in Neural Information
Processing Systems. https://arxiv.org/abs/1503.02531

[13] Zhu M, Gupta S. The 6th International Conference on Learning Representations (ICLR 2018), April 30–May 3, 2018:

2022 Volume 1, Issue 1 Neural Network Model Compression Algorithms for Image Classification in Embedded Systems

-27-

To Prune, or Not to Prune: Exploring the Efficacy of Pruning for Model Compression. 2018, Vancouver. https://arxiv.
org/abs/1710.01878.

[14] Heo B, Lee M, Yun S, et al. The 33rd AAAI Conference on Artificial Intelligence (AAAI-19), January 27–February
1, 2019: Knowledge Transfer via Distillation of Activation Boundaries Formed by Hidden Neurons. 2019, Honolulu.
https://doi.org/10.1609/aaai.v33i01.33013779

[15] Lecun Y, Bottou L, Bengio Y, et al., 1998, Gradient-Based Learning Applied to Document Recognition. IEEE,
86(11): 2278–2324. https://doi.org/10.1109/5.726791

[16] Simonyan K, Zisserman A. The 3rd International Conference on Learning Representations (ICLR 2015), May 7–9,
2015: Very Deep Convolutional Networks for Large Scale Image Recognition. 2015, San Diego. https://arxiv.org/
abs/1409.1556

[17] Huang G, Liu Z, van der Maaten L, et al. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 21–26, 2017: Densely Connected Convolutional Networks. 2017, Honolulu. https://doi.org/10.1109/
CVPR.2017.243

[18] Han S, Pool J, Tran J, et al., 2015, Learning Both Weights and Connections for Efficient Neural Networks. arXiv:
1506.02626. https://arxiv.org/abs/1506.02626

[19] See A, Luong M-T, Manning CD. The 20th SIGNLL Conference on Computational Natural Language Learning
(CoNLL), August 11–12, 2016: Compression of Neural Machine Translation via Pruning. 2016, Berlin. https://doi.
org/10.18653/v1/K16-1029

[20] Narang S, Elsen E, Diamos G, et al., 2017, Exploring Sparsity in Recurrent Neural Networks. arXiv: 1704.05119.
https://arxiv.org/abs/1704.05119

[21] Romero A, Ballas N, Kahou SE, et al., 2015, Fitnets: Hints for Thin Deep Nets. arXiv: 1412.6550. https://arxiv.org/
abs/1412.6550

[22] Lim S, Kim I, Kim T, et al., 2019, Fast Autoaugment. Advances in Neural Information Processing Systems, 32.
https://papers.nips.cc/paper/2019/hash/6add07cf50424b14fdf649da87843d01-Abstract.html.

Publisher's note

Art & Technology Publishing remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

