

Clinical Pharmacological Review of Cefepime/ Taniborbactam: A New Type β-lactamase Inhibitor Complex Formulation

Mingming Xin, Xuzhu Ma*, Jing Dong, Minggui Lin

Infectious Diseases Department, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China

*Corresponding author: Xuzhu Ma, mxz@btch.edu.cn

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract:

Bacterial resistance is increasing exponentially worldwide, especially in carbapenem-resistant Gram-negative bacteria, but effective therapeutic drugs are very limited. Taniborbactam is a novel cyclic borate ester β -lactamase inhibitor. It has a strong inhibitory effect on serine and metallo- β -lactamases (Ambler classes A, B, C, and D). Currently, taniborbactam is combined with cefepime for new drug development, with the potential to address this medication demand. This article provides a review of the mechanism, pharmacodynamics, and pharmacokinetic clinical studies of cefepime/taniborbactam.

Online publication: February 25, 2025

1. Introduction

Infections caused by carbapenem-resistant Gramnegative bacteria (CR-GNB) pose a significant challenge in clinical anti-infective treatment, with limited options for antimicrobial agents. The primary mechanism of resistance of CR-GNB to antimicrobial agents is the production of carbapenemases. Therefore, the development of new drugs that inhibit the activity of carbapenemases represents an important direction in antimicrobial research and development. Currently, the novel β -lactamase inhibitors available for clinical use

Keywords:

β-lactamases Cefepime Taniborbactam Pharmacodynamics Pharmacokinetics

include avibactam, vaborbactam, and relebactam, which target class A *Klebsiella pneumoniae* Carbapenemase (KPC) and certain class D oxacillinases (OXA), but do not inhibit class B metallo-β-lactamases (MBL)^[1]. Taniborbactam, first disclosed as a patented product by Venatorx Pharmaceuticals in 2014^[2], exhibits broad inhibitory activity against carbapenemases, including MBLs. Its combination with cefepime as a new antimicrobial agent for the treatment of CR-GNB infections has garnered significant clinical attention. This review summarizes the clinical pharmaceutical research on cefepime/taniborbactam.

2. Development and mechanism of action of taniborbactam

Taniborbactam (VNRX-5133) is a boron-containing β-lactamase inhibitor developed by Venatorx Pharmaceuticals in the United States ^[2]. Its chemical structure is (3R)-3-[[2-[trans-4-[(2-aminoethyl)amino] cyclohexyl]acetyl]amino]-3,4-dihydro-2-hydroxy-2H-1,2-benzoxaborole-8-carboxylic acid (Figure 1), with a molecular formula of C19H28BN3O5 and a relative molecular weight of 389.2. Taniborbactam exhibits broad inhibitory activity against β -lactamases, including class A, C, and D serine- β -lactamases (SBLs) as well as some class B MBLs, such as Verona integron-encoded metalloβ-lactamase (VIM) and New Delhi metallo-β-lactamase (NDM). However, it has poor inhibitory activity against imipenem (IMP)^[3]. Currently, five Phase I clinical studies ^[4-8] and one Phase III clinical study ^[9] have been completed for this drug, and a new Phase III clinical study was initiated in December 2023^[10].

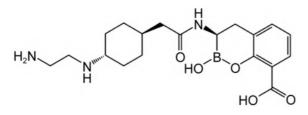


Figure 1. Chemical structure of taniborbactam^[2].

Taniborbactam can mimic the intermediates of the hydrolysis process of β -lactamases by serinebased and zinc-based enzymes, thereby inhibiting the activity of β -lactamases ^[11]. The mechanism of action of taniborbactam primarily involves the formation of a reversible covalent bond with the serine residue, resulting in slow dissociation and prolonged residence time at the active site (half-life of 30 to 105 minutes), thus inhibiting the activity of SBLs. Its inhibition of MBLs is achieved through the interaction of boron with the active zinc site, inducing a narrowing of the active site cleft and forming a more stable enzyme-inhibitor complex. It exerts direct inhibitory effects on NDM and VIM by competing with their substrates for binding ^[12]. According to a study by Ono *et al.* (2024) ^[13], the effective binding of taniborbactam to NDM-1 is mediated by K224 and E149 (an amino acid side chain located near the active zinc site). Hydrogen bonding with K224 and E149, followed by the interaction of boron with the active zinc site, produces inhibition of NDM-1. However, the homologous residue of E149 in IMP-1 is D149, and its shorter aspartic acid side chain (by one carbon) compared to glutamic acid may prevent taniborbactam from forming a hydrogen bond with D149, suggesting a reason for taniborbactam's failure to inhibit IMP-1.

3. Pharmacodynamics (PD) studies of cefepime/taniborbactam

Current research indicates that taniborbactam exhibits good *in vitro* antibacterial activity against carbapenemaseproducing Enterobacteriaceae and carbapenem-resistant *Pseudomonas aeruginosa*.

A Spanish study showed that among 67 meropenemresistant Enterobacteriaceae isolates investigated, cefepime/ taniborbactam demonstrated antibacterial activity against 94% of the resistant strains (minimum inhibitory concentration (MIC) $> 8 \text{ mg} \cdot \text{L}^{-1}$), including strains producing KPC, OXA-48, and MBL enzymes ^[14]. In strains producing OXA-48 and MBL enzymes, cefepime/taniborbactam exhibited superior antibacterial activity compared to ceftazidime/ avibactam, ceftolozane/tazobactam, imipenem/ relebactam, and meropenem/vaborbactam (Table 1). A study by Mushtaq et al. (2021) ^[15] demonstrated that the combination of 4 mg \cdot L⁻¹ taniborbactam with cefepime could reduce the MIC values of KPC-producing Enterobacteriaceae from $>128 \text{ mg} \cdot \text{L}^{-1}$ to $2 \text{ mg} \cdot \text{L}^{-1}$ and those of VIM-producing Enterobacteriaceae from $>128 \text{ mg} \cdot \text{L}^{-1}$ to 8 mg·L⁻¹. Piccirilli et al. (2021) ^[16] conducted an in vitro study on 26 MBL-producing Enterobacteriaceae isolates, including 13 Escherichia coli, 8 Klebsiella pneumoniae, 2 Enterobacter cloacae, and 3 Citrobacter freundii. The combination of taniborbactam (4 mg \cdot L⁻¹) with cefepime showed antibacterial activity against isolates producing VIM-1, VIM-2, VIM-4, VIM-19, NDM-1, NDM-5, and NDM-7, restoring the activity of cefepime against NDM-producing strains. However, it had no significant antibacterial effect on isolates producing IMP-1 and IMP-4 (Table 2). Another study indicated that cefepime/

		FEP			FTB			CZA	
Carbapenemase (type)	$\mathrm{MIC}_{50}(\mathrm{mg}\cdot\mathrm{L}^{-1})$	MIC ₉₀ (mg·L ⁻¹)	Sensitivity rate (%)	MIC ₅₀ (mg·L ⁻¹)	MIC ₉₀ (mg·L ⁻¹)	Sensitivity rate (%)	MIC ₅₀ (mg·L ⁻¹)	MIC ₉₀ (mg·L ⁻¹)	Sensitivity rate (%)
Enterobacteriales $(n = 247)$	32	> 32	15.8	0.5/4	4/4	97.6	1/4	> 32/4	80.6
MER-R [27.1% (67/247)]	> 32	> 32	4.5	2/4	8/4	94.0	2/4	> 32/4	73.1
KPC (35/67)	> 32	> 32	0	2/4	8/4	94.3	2/4	8/4	94.3
OXA-48 (15/67)	16	> 32	20.0	4/4	8/4	100	1/4	2/4	93.3
VIM, NDM, IMP (16/67)	> 32	> 32	0	2/4	16/4	87.5	> 32/4	> 32/4	12.5
Pseudomonas $(n = 170)$	32	> 32	20.0	8/4	32/4	67.6	8/4	> 32/4	61.2
MER-R [71.8% (122/170)]	32	> 32	10.7	8/4	32/4	63.9	8/4	> 32/4	51.6
GES (30/122)	> 32	> 32	0	8/4	8/4	93.9	4/4	8/4	96.7
VIM (49/122)	> 32	> 32	13.0	8/4	> 32/4	61.2	> 32/4	> 32/4	14.3
Non-carbapenemase (43/122)	32	> 32	16.3	16/4	32/4	46.5	8/4	> 32/4	62.8
		CT			IMR			MEV	
Carbapenemase (type)	$\mathrm{MIC}_{\mathrm{50}}(\mathrm{mg}\cdot\mathrm{L}^{-1})$	$MIC_{90}(mg \cdot L^{-1})$	Sensitivity rate (%)	$MIC_{50} (mg \cdot L^{-1})$	MIC ₉₀ (mg·L ⁻¹)	Sensitivity rate (%)	$\mathrm{MIC}_{\mathrm{50}}(\mathrm{mg}{\cdot}\mathrm{L}^{-1})$	MIC ₉₀ (mg·L ⁻¹)	Sensitivity rate (%)
Enterobacteriales $(n = 247)$	> 32/4	> 32/4	11.7	1/4	8/4	71.7	1/8	16/8	89.1
MER-R [27.1% (67/247)]	> 32/4	> 32/4	3.0	2/4	> 32/4	53.7	4/8	> 32/8	62.7
KPC (35/67)	> 32/4	> 32/4	0	0.5/4	2/4	97.1	0.5/8	4/8	100
OXA-48 (15/67)	> 32/4	> 32/4	13.3	2/8	> 32/4	0	> 32/8	> 32/8	6.7
VIM, NDM, IMP (16/67)	> 32/4	> 32/4	0	8/4	> 32/4	12.5	16/8	> 32/8	31.2
Pseudomonas $(n = 170)$	8/4	> 32/4	34.7	16/4	> 32/4	37.1	32/8	> 32/8	32.9
MER-R [71.8% (122/170)]	8/4	> 32/4	17.2	32/4	> 32/4	16.4	> 32/8	> 32/8	8.2
GES (30/122)	8/4	8/4	0	32/4	32/4	0	> 32/8	> 32/8	0
VIM (49/122)	> 32/4	> 32/4	0	> 32/4	> 32/4	0	> 32/8	> 32/8	4.1
Non-carbapenemase (43/122)	8/4	> 32/4	48.8	4/4	32/4	46.5	16/8	> 32/8	18.6

trai	
-resistant s	
neropenem	
against 1	
tam and comparators against meropenem-resist	
and	
В	
actai	
borbacta	
/taniborbacta	
vime/taniborbacta	
cefepime/taniborbacta	
epime/taniborbac	
of cefepime/taniborbac	
of cefepime/taniborbac	
ctivity of cefepime/taniborbac	
of cefepime/taniborbac	

2025 Volume 10, Issue 1

[16]
_a
če
.ia
te
ac
qo
ter
En
à
cin
quí
rõ
d' p
Ĩ
MBL
fl
3 0
.in
tra
5 s
5
nst
gai
s ag
ors
itc
dit
ini
se
na:
tan
ac
β-1
) E
tai
lac
β
pu
ı aı
an
ICti
β-l <i>ε</i>
Ŧ
0
vity
XİN
ас
ial
ter
ac
tib
an
ro
vii
ul
5.
le
ab
Ë

		0 1				MIC/mg·L ⁻¹			
CHINICAL ISOlates	Encoung	р-тастатазе туре —	AMX	AMC	MEM	FEP	CAZ	CAZ/AVI	FTB
Escherichia coli/VIM-1	AQ-2	В	> 512	256	> 128	> 1024	> 1024	> 1024	0.5
Escherichia coli/VIM-1	AQ-5	В	> 512	256	> 128	> 1024	> 1024	> 1024	0.5
Escherichia coli/VIM-1	AQ-28	В	> 512	256	> 128	> 1024	> 1024	> 1024	0.5
Citrobacter freundii/VIM-1	AQ-24	В	> 512	256	> 128	> 1024	> 1024	> 1024	1.0
Klebsiella pneumoniae/VIM-1	AQ-88	В	> 512	256	> 128	> 1024	> 1024	> 1024	2.0
Klebsiella pneumoniae/VIM-1	AQ-90	В	> 512	256	> 128	>1024	> 1024	> 1024	2.0
Klebsiella pneumoniae/VIM-1	AQ-95	В	> 512	256	> 128	>1024	> 1024	> 1024	2.0
Enterobacter cloacae/VIM-2	AQ-102	В	> 512	256	> 128	> 1024	> 1024	128	0.25
Enterobacter cloacae/VIM-2	AQ-100	В	> 512	256	> 128	>1024	> 1024	128	0.25
Escherichia coli/VIM-4	AQ-33	В	> 512	256	> 128	>1024	> 1024	> 1024	0.5
Escherichia coli/VIM-19	AQ-32	В	> 512	256	> 128	> 1024	> 1024	256	0.12
Escherichia coli/IMP-1/CMY-2	AQ-41	B/C	> 512	256	> 128	> 1024	> 1024	> 1024	128
Klebsiella pneumoniae/IMP-4/SHV-12	AQ-45	B/A	> 512	256	> 128	> 1024	> 1024	> 1024	128
Citrobacter freundü/NDM-1	AQ-25	В	> 512	256	> 128	> 1024	> 1024	> 1024	0.12
Citrobacter freundü/NDM-1	AQ-23	В	> 512	256	> 128	> 1024	> 1024	> 1024	0.12
Escherichia coli/NDM-1	AQ-7	В	> 512	256	> 128	> 1024	> 1024	> 1024	4.0
Escherichia coli/NDM-1	AQ-11	В	> 512	256	> 128	> 1024	> 1024	> 1024	4.0
Escherichia coli/NDM-1	AQ-22	В	> 512	256	> 128	> 1024	> 1024	> 1024	0.25
Escherichia coli/NDM-1-CTX-M-15	AQ-92	B/A	> 512	256	> 128	> 1024	> 1024	> 1024	1.0
Klebsiella pneumoniae/NDM-1	AQ-12	В	> 512	256	> 128	> 1024	> 1024	> 1024	1.0
Klebsiella pneumoniae/NDM-1	AQ-15	В	> 512	256	> 128	> 1024	> 1024	> 1024	1.0
Klebsiella pneumoniae/NDM-1/OXA-181	AQ-17	B/D	> 512	256	> 128	> 1024	> 1024	> 1024	1.0
Klebsiella pneumoniae/NDM-1/OXA-232	AQ-18	B/D	> 512	256	> 128	> 1024	> 1024	> 1024	0.5
Escherichia coli/NDM-5	AQ-44	В	> 512	256	> 128	> 1024	> 1024	> 1024	4.0
Escherichia coli/NDM-5	AQ-39	В	> 512	256	> 128	> 1024	> 1024	> 1024	4.0
Escherichia coli/NDM-7	A0-42	В	> 512	256	> 128	> 1024	> 1024	> 1024	1.0

2025 Volume 10, Issue 1

taniborbactam exhibited good *in vitro* antibacterial activity against NDM-producing *Escherichia coli* isolates. Some NDM-5-producing *Escherichia coli* isolates had MIC values $> 8 \text{ mg} \cdot \text{L}^{-1}$, which may be due to mutations in penicillin-binding protein 3 (PBP3) caused by amino acid insertions ^[17].

Studies by Kloezen et al. (2021) [18] have shown that taniborbactam restores the antibacterial activity of cefepime against carbapenem-resistant Pseudomonas aeruginosa, reducing the MIC values of cefepime against strains producing AmpC- and VIM. An in vitro study in Spain demonstrated that among 122 isolates of meropenem-resistant Pseudomonas aeruginosa, cefepime/taniborbactam exhibited antibacterial activity against 63.9% of the resistant strains, particularly showing higher activity against 30 strains producing the Guiana extended-spectrum β -lactamase (GES)^[14]. Among these resistant strains, cefepime/taniborbactam (MIC $\leq 8/4$ mg·L⁻¹) showed higher antibacterial activity compared to ceftazidime/avibactam, ceftolozane/ tazobactam, imipenem/relebactam, and meropenem/ vaborbactam. Additionally, among 43 carbapenemasenon-producing resistant Pseudomonas aeruginosa strains, the antibacterial activity of cefepime/taniborbactam was comparable to that of ceftolozane/tazobactam and imipenem/relebactam, and higher than meropenem/ vaborbactam (Table 1).

4. Pharmacokinetic (PK) and PD studies of cefepime/taniborbactam in animal models

In a neutropenic mouse thigh infection model, doseranging studies of taniborbactam revealed that increasing its dosing concentration enhances the antibacterial activity of cefepime against KPC-, OXA-, and ESBL-producing Gram-negative bacteria. The dosing frequency did not affect cefepime's antibacterial activity ^[19], suggesting that the PK/PD parameter most relevant to taniborbactam's inhibitory activity may be fAUC0-24/MIC. Increasing the dose of taniborbactam can enhance its enzyme-inhibiting effect. Human simulation studies showed that cefepime/ taniborbactam (2/0.5 g, q8h, 2-hour infusion) has good *in vivo* antibacterial activity against carbapenemresistant strains. In vivo studies conducted in mouse models of complex urinary tract infection (cUTI)^[20] and pneumonia^[21] demonstrated that cefepime/taniborbactam exhibits significant antibacterial activity against SBLsproducing Enterobacteriaceae (including CTX-M, KPC, OXA-48), AmpC-type *Pseudomonas aeruginosa*, and *Stenotrophomonas maltophilia*. A dosing regimen of 2/0.5 g, q8h is suggested. In a bacteremia model of mice infected with *Escherichia coli* (NDM-1) or *Klebsiella pneumoniae* (KPC-2, VIM-4, CMY-4), taniborbactam reduced the ED₅₀ of cefepime by approximately 5 times^[22]. These findings can guide the selection of dosing regimens for humans.

5. PK studies of cefepime/taniborbactam in humans

PK studies of taniborbactam in healthy subjects ^[23] showed that the C_{max} of taniborbactam after singleday administration (750 mg, q8h) was $(39,122 \pm 23.7)$ ng·mL⁻¹, with an AUC of (11,914 \pm 18.0) ng·h·mL⁻¹. For multiple-day administration (750 mg, q8h), the C_{max} was $(38,778 \pm 18.2)$ ng·mL⁻¹, and the AUC was $(139,518 \pm$ 21.6) ng·h·mL⁻¹. The volume of distribution (V_z) was (37.4 ± 19.9) L, the half-life (t1/2) was (4.7 ± 15.4) h, and the renal clearance at steady state (CLr,ss) was (5.2 \pm 28.6) L·h⁻¹. Approximately 90% of taniborbactam was excreted unchanged in urine (Table 3). Based on the evaluation of blood urea nitrogen, serum creatinine, glomerular filtration rate, and tubular epithelial cell casts, there was no evidence of nephrotoxicity with cefepime/ taniborbactam. There were no significant differences in C_{max} and T_{max} between single and multiple-day administrations of taniborbactam. The AUC was higher after multiple-day administration, and both Cmax and AUC increased with higher dosing.

Dowell *et al.* (2022) ^[24] studied both healthy subjects and subjects with renal impairment, showing that the PK profiles of cefepime and taniborbactam are generally similar. At a dose of 2/0.5 g for cefepime/taniborbactam, the renal clearance (CLR) was essentially the same for healthy subjects and those with mild renal impairment, at (4.37 ± 17.8) and (4.23 ± 22.7) L·h⁻¹, respectively. For subjects with moderate renal impairment, CLR was (1.59 ± 21.0) L·h⁻¹, and for those with severe renal impairment, CLR was (0.76 ± 120.3) L·h⁻¹. All renal impairment groups showed significantly increased AUC,

Parameter	Days of administration	Dose of taniborbactam		
	(ration/d)	250 mg, q8h	500 mg, q8h	750 mg,q8h
C /namI ⁻¹	1	10544 ± 18.3	25778 ± 15.2	39122 ± 23.7
$C_{max}/ng \cdot mL^{-1}$	10	11188 ± 16.5	26533 ± 13.0	38778 ± 18.2
T /I	1	2.0 (2.0, 2.1)	2.0 (2.0, 2.1)	2.0 (2.0, 2.3)
T _{max} /h	10	2.0 (2.0, 2.1)	2.0 (2.0, 2.3)	2.0 (2.0, 2.3)
	1	34447 ± 17.2	81890 ± 14.7	119140 ± 18.0
AUC/ng·h·mL ⁻¹	10	41563 ± 15.1	89103 ± 13.8	139518 ± 21.6
V_z/L	10	36.0 ± 28.3	39.8 ± 14.3	37.4 ± 19.9
$CL_{ss}/L \cdot h^{-1}$	10	6.2 ± 15.9	5.7 ± 12.6	5.6 ± 21.1
t _{1/2} /h	10	4.1 ± 29.3	4.9 ± 13.3	4.7 ± 15.4
Ae/mg	10	211.0 ± 11.8	462.2 ± 10.2	692.2 ± 21.7
Fe/%	10	84.4 ± 11.8	92.4 ± 10.2	92.3 ± 21.7
$CL_{R.ss}/L \cdot h^{-1}$	10	5.2 ± 17.3	5.3 ± 14.2	5.2 ± 28.6

Table 3. PK parameters of taniborbactam at different doses $^{[23]}$ (mean ± SD)

Table 4. PK parameters of cefepime/taniborbactam in subjects with different renal functions $^{[24]}$ (mean \pm SD)

D. (Normal renal function —	Renal impairment		
Parameter		Mild	Moderate	Severe
Cefepime				
$C_{max}\!/\mu g\!\cdot\!mL^{1}$	102 ± 25.3	101 ± 19.4	124 ± 20.6	129 ± 21.8
$AUC/\mu g \cdot h \cdot mL^{-1}$	343 ± 13.2	418 ± 9.0	913 ± 20.0	1589 ± 69.0
t _{1/2} /h	2.53 ± 0.53	3.03 ± 0.39	5.53 ± 1.34	10.12 ± 5.16
V_{z}/L	20.2 ± 20.5	20.0 ± 21.2	16.3 ± 25.6	16.4 ± 21.1
$CL/L \cdot h^{-1}$	5.65 ± 13.8	4.61 ± 11.6	2.09 ± 23.2	1.23 ± 66.6
Taniborbactam				
$C_{max}/\mu g \cdot mL^{-1}$	22.0 ± 11.2	22.8 ± 22.6	26.9 ± 24.1	27.9 ± 21.7
$AUC/\mu g{\cdot}h{\cdot}mL^{\cdot1}$	83.6 ± 11.4	97.4 ± 11.5	225 ± 22.5	445 ± 79.3
t _{1/2} /h	10.2 ± 2.6	19.5 ± 9.9	17.6 ± 2.6	21.3 ± 10.1
V _z /L	82.0 ± 33.4	123.0 ± 59.5	53.1 ± 35.6	31.5 ± 43.5
$CL/L \cdot h^{-1}$	5.79 ± 11.7	4.95 ± 13.9	2.12 ± 25.8	1.10 ± 76.7
$CL_R/L \cdot h^{-1}$	4.37 ± 17.8	4.23 ± 22.7	1.59 ± 21.0	0.76 ± 120.3

 C_{max} , and $t_{1/2}$ compared to the normal group (**Table 4**). For patients with reduced renal function, increased plasma concentrations, prolonged drug half-life, and varying degrees of renal damage, adjustments to the dosing of cefepime and taniborbactam are necessary.

6. Phase III clinical study of cefepime/ taniborbactam

There is limited clinical research data available for cefepime/taniborbactam. Currently, a Phase III double-blind, randomized controlled clinical study (NCT03840148) ^[9] has been completed to evaluate the clinical efficacy, safety, and tolerability of cefepime/ taniborbactam (2 g/0.5 g, q8h) compared to meropenem (1 g, q8h) in the treatment of cUTI. This study defines microbiological eradication as <1000 CFU/mL for Gram-negative bacteria, and clinical resolution as the resolution or return to baseline of symptoms of urinary tract infection. The observation period ranged from 7 to 14 days of treatment up to 28 to 35 days of follow-up. Results from various observation stages showed that the cefepime/taniborbactam treatment group was superior to the meropenem treatment group in both microbiological and clinical outcomes (Table 5)^[25].

Regarding adverse events that occurred during treatment, the study showed that the most common symptoms were headache and diarrhea, with a rate of 35.5% in the cefepime/taniborbactam group and 29.0% in the meropenem group. The safety and tolerability of cefepime/taniborbactam were good, and its safety profile was similar to that of meropenem ^[25].

7. Summary

In summary, taniborbactam exhibits good inhibitory activity against carbapenemases. As a novel β -lactam/ β -lactamase inhibitor combination, cefepime/ taniborbactam demonstrates strong antibacterial activity against CR-GNB, providing a new treatment option for clinical use. Currently, the available research data is limited, and further studies are needed on the *in vitro* antibacterial activity of cefepime/taniborbactam against a larger sample size of clinically isolated strains, as well as on the types of infections treated, efficacy, and safety in clinical settings.

Outcome measures	Number of effective patients / To (Effective rate	Treatment difference (%) (95% CI)	
	Cefepime / Taniborbactam	Meropenem	_
Primary outcome measures			
Composite success in cure trial	207/293 (70.6)	83/143 (58.0)	12.6 (3.1–22.2)
Microbiology	229/293 (78.2)	95/143 (66.4)	11.7 (2.9–21.0)
Clinical	251/293 (85.7)	116/143 (81.1)	4.5 (-2.6–12.6)
Secondary outcome measures			
Composite success at the end of treatment	261/293 (89.1)	123/143 (86.0)	3.1 (-3.2–10.4)
Microbiology	284/293 (96.9)	139/143 (97.2)	-0.3 (-3.5–4.1)
Clinical	265/293 (90.4)	127/143 (88.8)	1.6 (-4.1-8.5)
Composite success during later follow-up	187/293 (63.8)	74/143 (51.7)	12.1 (2.2–21.9)
Microbiology	207/293 (70.6)	90/143 (62.9)	7.7 (-1.6–17.3)
Clinical	238/293 (81.2)	102/143 (71.3)	9.9 (1.5–18.8)

Table 5. Comparison of the efficacy of cefepime/taniborbactam and meropenem^[25]

Disclosure statement	·····
The authors declare no conflict of interest.	

References

- Losito AR, Raffaelli F, Del Giacomo P, et al., 2022, New Drugs for the Treatment of Pseudomonas aeruginosa Infections With Limited Treatment Options: A Narrative Review. Antibiotics, 11(5): 579.
- [2] Wu SP, Xu HY, Hu XD, 2019, Beta-Lactamase Inhibitor: US10479805.
- [3] Krajnc A, Brem J, Hinchliffe P, et al., 2019, Bicyclic Boronate VNRX-5133 Inhibits Metallo- and Serine-β-Lactamases. Journal of Medicinal Chemistry, 62(18): 8544–8556.
- [4] Venatorx Pharmaceuticals, Inc., 2019, Safety and Pharmacokinetics of VNRX-5133 in the Epithelial Lining Fluid of Healthy Adult Subjects, visited January 28, 2024, https://clinicaltrials.gov/study/NCT03870490.
- [5] Venatorx Pharmaceuticals, Inc., 2019, VNRX-5133 With VNRX-5022 in Subjects With Varying Degrees of Renal Impairment, visited January 28, 2024, https://clinicaltrials.gov/study/NCT03690362.
- [6] Liu X, Li B, Chen Y, et al., 2024, Research Progress on Therapeutic Drug Monitoring of Ceftazidime/Avibactam. Chinese Journal of New Drugs, 33(9): 904–910.
- [7] Venatorx Pharmaceuticals, Inc., 2018, VNRX-5133 Drug-Drug Interaction in Healthy Adult Volunteers, visited January 28, 2024, https://clinicaltrials.gov/study/NCT03332732.
- [8] Venatorx Pharmaceuticals, Inc., 2021, Safety and Intrapulmonary Pharmacokinetics of Cefepime and Taniborbactam in Healthy Subjects, visited January 28, 2024, https://clinicaltrials.gov/study/NCT04951505.
- [9] Venatorx Pharmaceuticals, Inc., 2022, Safety and Efficacy Study of Cefepime/VNRX-5133 in Patients With Complicated Urinary Tract Infections, visited January 28, 2024, https://clinicaltrials.gov/study/NCT03840148.
- [10] Venatorx Pharmaceuticals, Inc., 2023, Cefepime-Taniborbactam vs Meropenem in Adults With VABP or Ventilated HABP, visited January 28, 2024, https://clinicaltrials.gov/study/NCT06168734.
- [11] Liu B, Trout REL, Chu GH, et al., 2020, Discovery of Taniborbactam (VNRX-5133): A Broad-Spectrum Serine- and Metallo-β-Lactamase Inhibitor for Carbapenem-Resistant Bacterial Infections. Journal of Medicinal Chemistry, 63(6): 2789–2801.
- [12] Hamrick JC, Docquier JD, Uehara T, et al., 2020, VNRX-5133 (Taniborbactam): A Broad-Spectrum Inhibitor of Serineand Metallo-β-Lactamases, Restores Activity of Cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 64(3): e01963–e01919.
- [13] Ono D, Mojica MF, Bethel CR, et al., 2024, Structural Role of K224 in Taniborbactam Inhibition of NDM-1. Antimicrobial Agents and Chemotherapy, 68(2): e0133223.
- [14] Hernández-García M, García-Castillo M, Ruiz-Garbajosa P, et al., 2022, In Vitro Activity of Cefepime-Taniborbactam Against Carbapenemase-Producing Enterobacterales and Pseudomonas aeruginosa Isolates Recovered in Spain. Antimicrobial Agents and Chemotherapy, 66(3): e0216121.
- [15] Mushtaq S, Vickers A, Doumith M, et al., 2021, Activity of β-Lactam/Taniborbactam (VNRX-5133) Combinations Against Carbapenem-Resistant Gram-Negative Bacteria. Journal of Antimicrobial Chemotherapy, 76(1): 160–170.
- [16] Piccirilli A, Segatore B, Brisdelli F, et al., 2021, Potent Inhibitory Activity of Taniborbactam Towards NDM-1 and NDM-1 Q19X Mutants, and In Vitro Activity of Cefepime/Taniborbactam Against MBL-Producing Enterobacterales. International Journal of Antimicrobial Agents, 57(1): 106228.
- [17] Wang XJ, Zhao CJ, Wang Q, et al., 2020, Erratum to: In Vitro Activity of the Novel β-Lactamase Inhibitor Taniborbactam (VNRX-5133), in Combination With Cefepime or Meropenem, Against MDR Gram-Negative Bacterial Isolates From

China. Journal of Antimicrobial Chemotherapy, 75(7): 2019.

- [18] Kloezen W, Melchers RJ, Georgiou PC, et al., 2021, Activity of Cefepime in Combination With the Novel β-Lactamase Inhibitor Taniborbactam (VNRX-5133) Against Extended-Spectrum-β-Lactamase-Producing Isolates in In Vitro Checkerboard Assays. Antimicrobial Agents and Chemotherapy, 65(4): e02338-e02320.
- [19] Abdelraouf K, Abuhussain SA, Nicolau DP, 2020, In Vivo Pharmacodynamics of New-Generation β-Lactamase Inhibitor Taniborbactam (Formerly VNRX-5133) in Combination With Cefepime Against Serine-β-Lactamase-Producing Gram-Negative Bacteria. Journal of Antimicrobial Chemotheraphy, 75(12): 3601–3610.
- [20] Lasko MJ, Nicolau DP, Asempa TE, 2022, Clinical Exposure-Response Relationship of Cefepime/Taniborbactam Against Gram-Negative Organisms in the Murine Complicated Urinary Tract Infection Model. Journal of Antimicrobial Chemotheraphy, 77(2): 443–447.
- [21] Abdelraouf K, Nicolau DP, 2023, In Vivo Pharmacokinetic/Pharmacodynamic Evaluation of Cefepime/Taniborbactam Combination Against Cefepime-Non-Susceptible Enterobacterales and Pseudomonas Aeruginosa in a Murine Pneumonia Model. Journal of Antimicrobial Chemotheraphy, 78(3): 692–702.
- [22] Weiss W, Pulse M, Nguyen P, et al., 2018, Efficacy of Cefepime/VNRX-5133, a Novel Broad-Spectrum β-Lactamase Inhibitor, in a Murine Bacteraemia Infection Model With Carbapenem-Resistant Enterobacteriaceae (CREs), UNT Health Science Center, European Congress of Clinical Microbiology and Infectious Diseases, Madrid.
- [23] Dowell JA, Dickerson D, Henkel T, 2021, Safety and Pharmacokinetics in Human Volunteers of Taniborbactam (VNRX-5133), a Novel Intravenous β-Lactamase Inhibitor. Antimicrobial Agents and Chemotheraphy, 65(11): e0105321.
- [24] Dowell JA, Marbury TC, Smith WB, et al., 2022, Safety and Pharmacokinetics of Taniborbactam (VNRX-5133) With Cefepime in Subjects With Various Degrees of Renal Impairment. Antimicrobial Agents and Chemotheraphy, 66(9): e0025322.
- [25] Wagenlehner FM, Gasink LB, McGovern PC, et al., 2024, Cefepime-Taniborbactam in Complicated Urinary Tract Infection. The New England Journal of Medicine, 390(7): 611–622.

Publisher's note

Whioce Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.