Detection of the Carbapenem Resistance Gene in Gram-Negative Rod Bacteria Isolated from Clinical Specimens
Keywords:
blaKPC, blaNDM, blaIMP, blaVIM, blaOXA-48-like, Real-time PCRAbstract
Carbapenem-resistant Enterobacteriaceae (CRE) pose an increasing public health threat and has limited treatment options with high associated mortality. Genotypes of carbapenemase that threaten public health (blaKPC, blaNDM, blaIMP, and blaVIM) and blaOXA-48-like genes were detected by phenotypic and molecular diagnosis, and related gene distribution patterns were investigated. Phenotypic testing using the modified Hodge test confirmed positivity in all 41 strains examined, and carbapenemase inhibitory testing using meropenem + phenyl boronic acid or meropenem + EDTA confirmed positivity in 18 and 8 strains, respectively. Polymerase chain reaction (PCR) revealed the presence of amplification products in 28 strains of blaKPC, 25 strains of blaNDM, 5 strains of blaIMP, 1 strain of blaVIM, and 13 strains of blaOXA-48-like. In addition, 7 strains of blaKPC+ blaNDM, 1 strain of blaKPC + blaIMP, 1 strain of blaNDM + blaOXA-48-like, 1 strain of blaNDM + blaVIM, 4 strains of blaKPC + blaNDM + blaIMP, and 4 strains of blaKPC + blaNDM + blaOXA-48-like were identified. Melting curve analysis using real-time PCR was wholly consistent with PCR results. The study shows that genetic identification of highly specific CRE by real-time PCR could be used to provide early diagnoses and infection control, improve surveillance, and prevent the transmission of CRE.
References
Feil EJ, 2016, Enterobacteriaceae: Joining the Dots with Pan-European Epidemiology. Lancet Infect Dis, 17(2): 118–119. https://doi.org/10.1016/S1473-3099(16)30333-4
Weiner LM, Webb AK, Limbago B, et al., 2016, Antimicrobial-Resistant Pathogens Associated with Healthcare- Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol, 37(11): 1288–1301. https://doi.org/10.1017/ice.2016.174
van Duin D, Doi Y, 2016, The Global Epidemiology of Carbapenemase-Producing Enterobacteriaceae. Virulence, 8(4): 460–469. https://doi.org/10.1080/21505594.2016.1222343
Han R, Shi Q, Wu S, et. al., 2020, Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated from Adult and Children Patients in China. Front Cell Infect Microbiol, 2020(10): 314. https://doi.org/10.3389/fcimb.2020.00314
World Health Organization, 2019, New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis, World Health Organization, April 29, 2019.
Li J, Bi W, Dong G, et al., 2020, The New Perspective of Old Antibiotic: In Vitro Antibacterial Activity of TMPSMZ Against Klebsiella pneumoniae. J Microbiol Immunol Infect, 53(5): 757–765. https://doi.org/10.1016/j.jmii.2018.12.013
Chen HY, Jean SS, Lee YL, et al., 2021, Carbapenem-Resistant Enterobacterales in Long-Term Care Facilities: A Global and Narrative Review. Front Cell Infect Microbiol, 2021(11): 601968. https://doi.org/10.3389/fcimb.2021.601968
Wang CH, Ma L, Huang LY, et al., 2021, Molecular Epidemiology and Resistance Patterns of blaOXA-48 Klebsiella pneumoniae and Escherichia coli: A Nationwide Multicenter Study in Taiwan. J Microbiol Immunol Infect, 54(4): 665–672. https://doi.org/10.1016/j.jmii.2020.04.006
Zhang H, Jia P, Zhu Y, et al., 2021, Susceptibility to Imipenem/Relebactam of Pseudomonas aeruginosa and Acinetobacter baumannii Isolates from Chinese Intra-Abdominal, Respiratory and Urinary Tract Infections: SMART 2015 to 2018. Infect. Drug Resist, 2021(14): 3509–3518. https://doi.org/10.2147/IDR.S325520
Jean SS, Harnod D, Hsueh PR, 2022, Global Threat of Carbapenem Resistant Gram-Negative Bacteria. Front Cell Infect Microbiol, 2022(12): 823684. https://doi.org/10.3389/fcimb.2022.823684
Aurilio C, Sansone P, Barbarisi M, et al., 2022, Mechanisms of Action of Carbapenem Resistance. Antibiotics, 11(3):421. https://doi.org/10.3390/antibiotics11030421
Diene SM, Rolain JM, 2014, Carbapenemase Genes and Genetic Platforms in Gram-Negative Bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter Species. Clin Microbiol Infect, 20(9): 831–838. https://doi.org/10.1111/1469-0691.12655
Potron A, Poirel L, Nordmann P, 2015, Emerging Broad-Spectrum Resistance to Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and Epidemiology. Int J Antimicrob Agents, 45(6): 568–585. https://doi.org/10.1016/j.ijantimicag.2015.03.001
Yigit H, Queenan AM, Anderson GJ, et al., 2001, Novel Carbapenem-Hydrolyzing β-Lactamase, KPC-1, from a Carbapenem-Resistant Strain of Klebsiella pneumoniae. Antimicrob Agents Chemother, 45(4): 1151–1161. https://doi.org/10.1128/AAC.45.4.1151-1161.2001
Deshpande LM, Jones RN, Fritsche TR, et al., 2006, Occurrence and Characterization of Carbapenemase-Producing Enterobacteriaceae: Report from the SENTRY Antimicrobial Surveillance Program (2000-2004). Microb Drug Resist, 12(4): 223–230. https://doi.org/10.1089/mdr.2006.12.223
Qi Y, Wei Z, Ji S, et al., 2011, ST11, the Dominant Clone of KPC-Producing Klebsiella pneumoniae in China. J Antimicrob Chemother, 66(2): 307–312. https://doi.org/10.1093/jac/dkq431
Leavitt A, Chmelnitsky I, Carmeli Y, et al., 2010, Complete Nucleotide Sequence of KPC-3-Encoding Plasmid pKpQIL in the Epidemic Klebsiella pneumoniae Sequence Type 258. AntimicrobAgents Chemother, 54(10): 4493–4496. https://doi.org/10.1128/AAC.00175-10
Walther-Rasmussen, J, Høiby N, 2007, Class A Carbapenemases. J Antimicrob Chemother, 60(3): 470–482. https://doi.org/10.1093/jac/dkm226
Frere JM, Galleni M, Bush K, et al., 2005, Is it Necessary to Change the Classification of Beta-Lactamases? J Antimicrob Chemother, 55(6): 1051–1053. https://doi.org/10.1093/jac/dki155
Yoon EJ, Jeong SH, 2021, Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol, 2021(12): 614058. https://doi.org/10.3389/fmicb.2021.614058
Thyrum PT, Yeh C, Birmingham B, et al., 1997, Pharmacokinetics of Meropenem in Patients with Liver Disease. Clin. Infect. Dis, 24(Supplement_2): 184–190. https://doi.org/10.1093/clinids/24.supplement_2.s184
Queenan AM, Bush K, 2007, Carbapenemases: The Versatile Beta-Lactamases. Clin Microbiol Rev, 20(3): 440–458. https://doi.org/10.1128/CMR.00001-07
Moquet O, Bouchiat C, Kinana A, et al., 2011, Class D OXA-48 Carbapenemase in Multidrug-Resistant Enterobacteria, Senegal. Emerg Infect Dis, 17(1): 143–144. https://doi.org/10.3201/eid1701.100244
Poirel L, Potron A, Nordmann P, 2012, OXA-48-like Carbapenemases: The Phantom Menace. J Antimicrob Chemother, 67(7): 1597–1606. https://doi.org/10.1093/jac/dks121
Banerjee R, Humphries R, 2017, Clinical and Laboratory Considerations for the Rapid Detection of Carbapenem- Resistant Enterobacteriaceae. Virulence, 8(4): 427–439. https://doi.org/10.1080/21505594.2016.1185577
Sheu CC, Chang YT, Lin SY, et al., 2019, Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Front Microbiol, 2019(10): 80. https://doi.org/10.3389/fmicb.2019.00080
Lin MY, Lyles-Banks RD, Lolans K, et al., 2013, The Importance of Long-Term Acute Care Hospitals in the Regional Epidemiology of Klebsiella pneumoniae Carbapenemase-Producing Enterobacteriaceae. Clin Infect Dis, 57(9): 1246–1252. https://doi.org/10.1093/cid/cit500
Clinical Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing; Twenty- First Informational Supplement M100-S27, Clinical Laboratory Standards Institute, Wayne PA.
Lee KW, Kim CK, Yong DE, et al., 2010, Improved Performance of the Modified Hodge Test with MacConkey Agar for Screening Carbapenemase-Producing Gram-Negative Bacilli. J Microbiol Methods, 83(2): 149–152. https://doi.org/10.1016/j.mimet.2010.08.010
The Korean Society of Clinical Microbiology, 2015, Diagnostic Instruction Carbapenemase Producing Enterobacteriaceae (CPE), The Korean Society of Clinical Microbiology, viewed May 19, 2022.
Monteiro J, Widen RH, Pignatari ACC, et al., 2012, Rapid Detection of Carbapenemase Genes by Multiplex Real- Time PCR. J Antimicrob Chemother, 67(4): 906–909. https://doi.org/10.1093/jac/dkr563
Poirel L, Revathi G, Bernabeu S, et al., 2011, Detection of NDM-1-Producing Klebsiella pneumoniae in Kenya. Antimicrob Agents Chemother, 55(2): 934–936. https://doi.org/10.1128/AAC.01247-10
Doyle D, Peirano G, Lascols C, et al., 2012, Laboratory Detection of Enterobacteriaceae that Produce Carbapenemases. J Clin Microbiol, 50(12): 3877–3880. https://doi.org/10.1128/JCM.02117-12
Wang L, Gu H, Lu X, 2012, A Rapid Low-Cost Real-Time PCR for the Detection of Klebsiella pneumoniae Carbapenemase Genes. Ann Clin Microbiol Antimicrob, 2012(11): 9. https://doi.org/10.1186/1476-0711-11-9
Kosykowska E, Dzieciątkowski T, Młynarczyk G, 2016, Rapid Detection of NDM, VIM, KPC and IMP Carbapenemases by Real-Time PCR. J Bacteriol Parasitol, 7(6): 299. https://doi.org/10.4172/2155-9597.1000299
Goudarzi H, Mirsamadi ES, Ghalavand Z, et al., 2019, Rapid Detection and Molecular Survey of blaVIM, blaIMP and blaNDM Genes Among Clinical Isolates of Acinetobacter baumannii Using New Multiplex Real-Time PCR and Melting Curve Analysis. BMC Microbiol, 2019(19): 122. https://doi.org/10.1186/s12866-019-1510-y
Bordin A, Trembizki E, Windsor M, et al., 2019, Evaluation of the SpeeDx Carba (beta) Multiplex Real-Time PCR Assay for Detection of NDM, KPC, OXA-48-like, IMP-4-like and VIM Carbapenemase Genes. BMC Infect Dis, 2019(19): 571. https://doi.org/10.1186/s12879-019-4176-z
Mutters NT, Tacconelli E, 2015, Infection Prevention and Control in Europe – The Picture in the Mosaic. Clin Microbiol Infect, 21(12): 1045–1046. https://doi.org/10.1016/j.cmi.2015.06.012
Tălăpan D, Rafila A, 2022, Five-Year Survey of Asymptomatic Colonization with Multidrug-Resistant Organisms in a Romanian Tertiary Care Hospital. Infect Drug Resist, 2022(15): 2959–2967. https://doi.org/10.2147/IDR.S360048
Choi IH, Lee YS, 2022, Active Surveillance for Carbapenem-Resistant Enterobacteriaceae at a Single Center for Four Years. Ann Lab Med, 42(3): 367–369. https://doi.org/10.3343/alm.2022.42.3.367
Tamma PD, Simner PJ, 2018, Phenotypic Detection of Carbapenemase-Producing Organisms from Clinical Isolates. J Clin Microbiol, 56(11): e01140–18. https://doi.org/10.1128/JCM.01140-18
Yang BS, Park JA, 2021, Detection of blaKPC and blaNDM Genes from Gram-Negative Rod Bacteria Isolated from a General Hospital in Gyeongnam. Korean J Clin Lab Sci, 2021(53): 49–59. https://doi.org/10.15324/kjcls.2021.53.1.49
Tawfick MM, Alshareef WA, Bendary HA, et al., 2020, The Emergence of Carbapenemase blaNDM Genotype Among Carbapenem-Resistant Enterobacteriaceae Isolates from Egyptian Cancer Patients. Eur J Clin Microbiol Infect Dis, 2020(39): 1251–1259. https://doi.org/10.1007/s10096-020-03839-2
El Solh AA, Alhajhusain A, 2009, Update on the Treatment of Pseudomonas aeruginosa Pneumonia. J Antimicrob Chemother, 64(2): 229–238. https://doi.org/10.1093/jac/dkp201
Goodman KE, Simner PJ, Tamma PD, et al., 2016, Infection Control Implications of Heterogeneous Resistance Mechanisms in Carbapenem Resistant Enterobacteriaceae (CRE). Expert Rev Anti-Infect Ther, 14(1): 95–108. http://doi.org/10.1586/14787210.2016.1106940
Mangold KA, Santiano K, Broekman R, et al., 2011, Real-Time Detection of blaKPC in Clinical Samples and Surveillance Specimens. J Clin Microbiol, 49(9): 3338–3339. https://doi.org/10.1128/JCM.00268-11