
Progress in Human Computer Interaction
2021 Volume 1, Issue 1 

ISSN: 2630-4635

-19-

Real-Time Correction Based on Wheel Odometry to 
Improve Pedestrian Tracking Performance in Small 
Mobile Robot
Jaehun Park1, Min Sung Ahn2, Jeakweon Han3*
1Department of Physics, Hanyang University, Seoul, Republic of Korea 
2Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, California, United States of America
3Department of Robotics, Hanyang University, Seoul, Republic of Korea 

*Corresponding author: Jeakweon Han, jkhan@hanyang.ac.kr

Copyright: © 2021 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC 

BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

A b s t r a c t

With the growth in the intelligence of mobile robots, interaction with humans is 
emerging as a very important issue for mobile robots, and the pedestrian tracking 
technique following the designated person is adopted in many cases in a way that 
interacts with humans. Among the existing multi-object tracking techniques for 
pedestrian tracking, Simple Online and Real-time Tracking (SORT) is suitable 
for small mobile robots that require real-time processing while having limited 
computational performance. However, SORT fails to reflect changes in object 
detection values caused by the movement of the mobile robot, resulting in poor 
tracking performance. To solve this performance degradation, this paper proposes a 
more stable pedestrian tracking algorithm by correcting object tracking errors caused 
by robot movement in real-time using wheel odometry information of a mobile robot 
and dynamically managing the survival period of the tracker that tracks the object. 
In addition, the experimental results show that the proposed methodology using data 
collected from actual mobile robots maintains real-time and has improved tracking 
accuracy with resistance to the movement of the mobile robot.
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1. Introduction
Mobile robots that have demonstrated industrial success 
as logistics robots and delivery robots [1] are becoming 
increasingly integrated into human life in various 
forms and ways beyond industrial use. Techniques for 

human tracking are being adopted in many cases, such 
as the commercialization of companion robots that 
follow a single person [2] and the development of robot 
performance art content where robots mimic human 
movements. In line with these trends, research on 



2021 Volume 1, Issue 1 Real-Time Correction Based on Wheel Odometry to Improve Pedestrian Tracking Performance in Small Mobile Robot

-20-

human tracking with mobile robots is currently actively 
progressing.

For a robot to follow a person, it must be capable 
of recognizing each individual as a unique object even 
when multiple people are present. To achieve this, 
multiple object tracking (MOT) technology is essential. 
However, there are several challenges in applying MOT 
to small mobile robots. The first challenge is real-time 
processing. Real-time performance is a top priority 
for mobile robots that make control decisions based 
on object-tracking results. However, most existing 
techniques do not guarantee real-time performance. 
Looking at the results of MOT20 [4], the most recent 
benchmark of the MOT Challenge [3], the top 25 
techniques in the accuracy performance metric [5,6] all 
have processing speeds below 20 Hz and only four of 
the top 32 techniques guarantee speeds above 20 Hz.

Considering these results, the SORT algorithm [7] 
is a suitable technique among existing multi-object 
tracking methods for mobile robots. SORT, denoted 
as Simple, Online, and Real-time Tracking, was first 
introduced in 2016 and achieved a top 32 ranking in 
terms of accuracy in the most recent MOT Challenge, 
the MOT20 benchmark,  recording the fastest 
processing speed of 57.3 Hz among MOT benchmarks. 
SORT is widely used in embedded systems like mobile 
robots due to its fast processing speed and simplicity [8]. 
Nevertheless, when applying SORT to mobile robots, 
there is a degradation in object tracking accuracy 
performance, and the reasons for this are as follows, 
which leads to the second problem.

In particular, since SORT does not cope with 
temporary object detection failures, it is greatly affected 
by temporary changes in input frames because it does 
not cope with temporary object detection failures, and 
the performance of IOU tracker [9] based multi-object 
tracking techniques such as SORT is significantly 
degraded. Some methods consider object features 
to compensate for these problems, but the resulting 
increase in computation time is unavoidable [10].

Due to these problems, the existing multi-object 

tracking techniques are not suitable for person-tracking 
mobile robots that need to maintain real-time and stable 
tracking. In this paper, we propose a methodology that 
overcomes the limitations of these existing techniques 
and makes them applicable to small mobile robots with 
limited computational capabilities. We introduce a 
method that estimates the rotation degree of the robot 
using wheel odometry and utilizes it to calibrate the 
human tracking algorithm in real time. Furthermore, 
we present a dynamic setting method for the object 
tracker’s survival period to maintain stable tracking.

2. Related research
2.1. Pedestrian tracking for mobile robot
Classic methods for applying person-tracking 
techniques to mobile robots have predominantly relied 
on distance measurement sensors. Research based 
on laser sensors has explored methodologies such as 
recognizing a person’s legs to infer their movement 
trajectories [11] and employing multiple laser sensors 
in multiple hypothesis tracking (MHT) [12] to perform 
human tracking [13].

Methodologies using camera sensors include 
stereo camera tracking [14] and RGB-D (color and 
depth) camera tracking [15,16], which have shown high 
performance in terms of processing speed. However, 
these distance measurement techniques have limitations 
in that they cannot track objects beyond the perception 
limit of the distance measurement sensor, and their 
dependence on the sensor makes them difficult to apply 
to small mobile robots.

Current ly,  wi th  the  development  of  deep 
learning, especially convolutional neural network-
based vision recognition technology, visual object 
tracking techniques are showing higher accuracy 
performance than classical methodologies [17]. Since 
these methods use only camera images as input, there 
is no dependence on specific ranging sensors, so they 
are generally applicable to small robots and a lot of 
research has been done on them [18-20].
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2.2. Visual object tracking
Visual object tracking is the task of detecting objects 
within a given frame and maintaining an identifiable 
state for each object. For tracking, it is necessary to 
first receive information about the object to be tracked, 
and based on whether a detection model is used or not, 
it is categorized into detection-based trackers, which 
use a detection mode, and detection-free trackers.

Detection-free trackers have the advantage of being 
able to track untrained objects since they determine the 
target to track based on an initial target at the beginning 
of the tracking sequence. Moreover, since they do not 
typically apply computationally demanding detection 
models, they offer computational advantages. However, 
detection-free trackers are only suitable for short 
sequences and are not well-suited for single-object 
tracking (SOT), which tracks only one object.

With the advancement of convolutional neural 
network (CNN) techniques and the development of 
object detection models based on them, many object 
detection models have achieved a high level of accuracy. 
Based on this, detection-based trackers have achieved 
high performance in the MOT domain. Compared to 
detection-free trackers, detection-based trackers that 
perform MOT show high performance even in long 
sequences, and since they track multiple objects, the 
algorithm is highly scalable, making it suitable for 
human tracking. On the other hand, in the field of 
MOT, methodologies based on the Siam tracker [21] or 
CFtracker [22] perform the best in the SOT field, while 
there is no obvious algorithm that performs the best 
in the MOT field. In particular, the complexity of the 
algorithm does not seem to lead to better performance, 
with a simple IoU tracker [9] using a good object detector 
often performing better than more complex algorithms.

2.3. SORT (Simple, Online, and Real-time 
Tracking)
SORT is an online real-time tracking technique based 
on the Kalman Filter and Hungarian algorithm, which 

approximates the motion of each tracked object with 
a linear constant velocity model. The object tracking 
process of SORT is as follows.

(1) Detect the positions of all objects in the frame
using an object detection model.

(2) Predict the next location of tracked objects
using the Kalman Filter.

(3) Match the detection values and prediction
values  based  on  IoU scores  us ing  the
Hungarian algorithm.

(4) Assign unique IDs to each object based on the
matching results and update the Kalman Filter.

SORT uses only object detection results for 
matching between the  current  f rame and the 
immediately preceding frame, ignoring other ancillary 
information such as bounding box locations. Because 
it does not use object features for tracking, temporary 
detection failures due to occlusion or overlapping 
targets will result in tracking failures.

Additionally, the camera viewpoint changes 
due to robot movement, making it difficult to match 
object detections with tracking predictions. Figure 
1 is an example of object tracking failure due to 
robot movement. This can be a critical problem for 
small mobile robots, where the time interval between 
consecutive frames is relatively long due to low 
computational processing speed.

Figure 1. Example of object tracking failure due to rotation of 
mobile robot. When two objects remain stationary, the objects 
tracked in T-1 (a) are assigned IDs 1 and 2. The robot rotates 
between T-1 and T (b), and the object assigned 1 fails to track in 
T, and object 2 is incorrectly tracked as object 1 in T.
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A methodology that compensates for the above 
problems caused by not including object feature 
information is DeepSORT [23], which reflects the feature 
points of the target recorded in the feature map of the 
object detection model in the matching, but DeepSORT 
increases the processing time by about 3 times 
compared to SORT but does not achieve a noticeable 
performance improvement in terms of accuracy, from 
59.8 to 61.4 of SORT [23].

2.4. Research on camera motion measurement
To address the problem of degraded object estimation 
performance due to moving cameras, we need to 
estimate the degree of camera motion. Visual odometry 
(VO) [24], a method for estimating camera motion from 
vision information, can be divided into stereo visual 
odometry (SVO) and monocular visual odometry 
(MVO) depending on whether a stereo or monocular 
camera is used.

VO methods may suffer from performance 
degradation due to factors such as dim lighting 
conditions or environmental interference, and they 
require significant computational resources as they 
operate by comparing multiple feature points across 
consecutive frames. Even the ARM-VO [25] technique 
proposed for small systems can only achieve a 

processing speed of 8 Hz when applied to Raspberry Pi 3.
Rather than this computationally intensive VO 

method, an odometry calculation method based on 
wheel encoders is more suitable for small mobile 
robots. The method of calculating the wheel encoder 
and using it to estimate the camera movement cannot 
be universally applied to all mobile camera cases like 
VO, and measurement errors may occur due to the slip 
of the mobile robot’s wheels, but it can obtain camera 
movement estimation results with less computation 
than VO.

3. Methodology
3.1. Hardware configuration and wheel 
odometry measurement of the mobile robot

The hardware of the mobile robot EDIE used in 
this study is shown in Figure 2.

EDIE is a differential drive robot based on two 
wheels, with a wheel radius of 0.035 m, a distance 
between wheels of 0.108 m, and an encoder resolution 
of 374 pulses per rotation. The MCU used is a 
Raspberry Pi 4, and the VPU for parallel computation 
processing is a NeuralCompute Stick 2 from Intel.

The odometry of a robot is usually represented 
by x , y, and 𝜃 information to describe the relative 
position between the starting point and the robot, but 

Figure 2. EDIE hardware CAD model 
and physical hardware
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the amount of change in x and y between 1 Hz relative 
to the camera frame is small compared to the amount 
of change in 𝜃, so we did not consider correction for 
x and y in this study. In the case of the robot used in 
the actual study, if the camera frame is updated at a 
frequency of 20 Hz when the speed of each motor is 
1 m/s, x can have a maximum change of 0.05 m, but 
in the case of rotation, if the left and right wheels are 
rotated in reverse, it can have a maximum change of 
53.05°.

When the camera is fixed to the robot, the 
camera movement can be obtained by applying the 
transformation matrix to the robot’s odometry, and the 
rotation angle of the robot’s odometry was calculated 
using the wheel encoder values as shown in Equation 
(1).

	 (1)

To correct the camera frame using the odometry 
calculated through the wheel encoder, synchronization 
between the odometry and the camera is required. For 
this purpose, the camera buffer size was changed to 1 to 
get only real-time images from the camera, and it was 
operated asynchronously with the main program using 
multithreads. In addition, the odometry information and 
the time stamp of the measurement were stored in the 
buffer to synchronize with the camera frame.

3.2. Real-time correction of object tracking 
considering camera rotation
The main goal of this calibration is to ensure that the 
Kalman Filter’s linear prediction model for predicting 
the next position of an object only recognizes the 
motion of the object, not the motion of the camera. This 
provides the basis for maintaining tracking in the face 
of camera movements and being resistant to temporary 
object detection failures. The flowchart of the human 
tracking technique, including the calibration process, is 
shown in Figure 3.

As shown in Figure 3, compensation for camera 
movement is performed just before the Predict stage 
of the Kalman Filter based on synchronized odometry. 
In the Predict stage, the Kalman Filter predicts the 
next state of the object according to a linear constant 
velocity system, and in the Update stage, the prediction 
error covariance and state variables are corrected 
based on the error between the matched actual object 
detection and prediction values. Since the Kalman 
Filter is updated after compensating for camera motion, 
the prediction error covariance and state variables can 
be updated with only the intact motion of the object. 
The Kalman Filter state variables used in this process 
are shown in Equation (2) [7].

(2)

The values of interest are x and , where  represents 
the horizontal pixel value of the object center 
coordinate and  represents the velocity value of the 
object. The rotational motion correction corresponds to 
the correction of the horizontal axis on the frame and 
corrects x by the difference in camera rotation angle 
between the current and previous viewpoints using 
Equation (3).

(3)

Here, frame_width represents the horizontal pixel 

Figure 3. Flowchart of person tracking algorithm including real-
time rotation correction
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width of the frame, and fov represents the camera’s 
horizontal field of view. Since  is calculated based 
on the corrected x value, only the intact motion of the 
object is included in the velocity calculation. The effect 
of applying these real-time corrections can be seen in 
Figure 4.

Figure 4. Object tracking prediction results during clockwise 
rotation

Figure 4 depicts a scenario in which the mobile 
robot is rotating clockwise, and in four consecutive 
frames, four people are continuously detected. In the 
case of SORT, despite successful object detection 
in all frames, matching fails due to errors caused by 
rotation, leading to a change in object IDs from (b) 
onwards, ultimately resulting in three out of four object 
IDs changing in (d). Nonetheless, in the proposed 
technique, object tracking is successfully maintained, 
even in the presence of robot motion, by predicting the 
next position stably.

3.3. Dynamical setting of the survival period 
of object trackers
In multi-object tracking, when the matching between 
object detection results and predictions fails, it is 
necessary to determine how long to maintain tracking 
of objects. The setting of the survival period of 
these object trackers should consider computational 
efficiency and tracking stability.

SORT determines that tracking does not need to be 
maintained if an object has not been detected for Tlost 
frames, and in all experiments, Tlost was set to 1. The 
reason for this setting is that SORT does not trust the 
predictions of the linear model and does not address the 
re-identification problem. Therefore, deleting object 
trackers that have failed to match quickly can increase 
computational efficiency, but it can lead to frequent 
tracking failures in the case of a detection model with 
relatively low detection performance.

However, in the proposed technique, camera 
motion correction improves the rel iabil i ty of 
predictions, allowing for an extension of the object 
tracker’s survival period. Furthermore, to reflect the 
improved prediction performance of the linear model 
when tracking is maintained for a longer period, the 
survival period of the existing static object tracker 
was set to increase proportionally to the tracking 
maintenance period. If tracking is maintained for THits 
frames, the survival period TAge of the object tracker is 
calculated as shown in Equation (4).

(4)

Here, max_age is the maximum for limiting the 
age of survival, and R is a variable that determines how 
much of THits  should be taken into account.

The performance gains from dynamically setting 
the object tracker’s survival time based on its prediction 
confidence are more pronounced in the presence of 
motion blur. Motion blur is a common occurrence in 
mobile robots, and the degradation of object tracking 
performance due to motion blur can be seen in Figure 5.
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At the (c) time point in Figure 5, object detection 
fails, and the object tracker cannot update through 
matching. Instead, it only predicts the next location of 
the object using the Kalman Filter. In this situation, 
with only prediction in progress, the camera’s viewpoint 
changes due to motion again, leading to tracking failure 
in SORT at (g) and a change in object IDs. In contrast, 
the proposed technique’s object tracker, through stable 
prediction of the next position, successfully maintains 
tracking when objects are detected again at (d).

4. Experiments
4.1. Test data
MOT Challenge data is commonly used as the 
performance evaluation criterion for multi-object 
tracking techniques. However, this data does not 
contain information about camera movement. 
Therefore, to evaluate the performance of the proposed 
methodology, test data that includes odometry 
information had to be constructed.

The data was collected from a camera attached 
to a mobile robot and contains camera odometry 
information and object position information for each 
frame. The ground truth position data of the objects 
was collected in the MOT20 Challenge format, 
where the odometry data contains x, y, and 𝜃 and the 
corresponding frame ID and is synchronized with the 
ground truth position data based on the frame ID.

The test data was collected in a total of 6 sequences 
and information about each sequence can be found 
in Table 1. thavg represents the average rotation angle 
of the mobile robot per frame, which can be used to 
observe how much the robot rotated at a time during 
the sequence.

4.2. Evaluation metrics
The following metrics were used for evaluating the 
performance of multi-object tracking techniques.

• MOTA(↑): Multi-object tracking accuracy [3]

• MOTP(↑): Summary of overall tracking

Figure 5. Object tracking results when object detection fails due to motion blur

Table 1. Overview of the PxRx sequences

Sequence FPS Resolution Length Boxes
PmRr 15 640 × 480 266 (00:18) 899 3.076°
PsRm 15 640 × 480 366 (00:24) 1,169 2.420°

PmRm1 15 640 × 480 460 (00:30) 1,442 2.369°
PmRm2 20 640 × 480 449 (00:22) 1,461 2.091°
PoRt1 20 640 × 480 739 (00:37) 2,698 0.858°
PoRt2 20 640 × 480 564 (00:28) 1,712 1.034
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precision [3]

• IDF1(↑): The ratio of correctly identified
detections over the average number of ground-
truth and computed detections [26]

• IDP(↑): Identification precision [26]

• IDR(↑): Identification recall [26]

• FP(↓): number of false detections [3]

• FN(↓): number of missed detections [3]

• IDsw(↓): Number of times the reported identity
of ground-truth track changes [3]

• Hz(↑): Processing speed (in frames per second
excluding the detector)

Metr ics  marked  wi th  (↑)  ind ica te  h igher 
performance, whereas metrics marked with (↓) indicate 
lower performance.

4.3. Object detection model
Since object tracking is based on object detection 
results, it is highly dependent on object detection 
performance, hence, selecting an appropriate object 
detection model is a very important issue for object 
tracking. There are various CNN-based object detection 
models, but YOLO [27] and SSD [28], which are one-
stage object detection models that can perform real-
time inference even with limited computing power, are 
suitable for mobile robots.

The object detection accuracy of YOLOv4 [29], 

YOLOv4-tiny [30], and SSDlite [31], which are object 
detection models in the YOLO and SSD series, was 
measured using PxRx data. Among these models, 
YOLOv4 showed the highest accuracy, followed by 
YOLOv4-tiny and SSDlite. For this experiment, the 
YOLOv4-tiny model was selected and used as the 
object detection model considering both accuracy and 
processing speed.

4.4. Dynamic setting of object tracker’s 
survival period experiment
The survival period of an object tracker is determined 
by how much the tracker’s predictions can be trusted. 
In the case of SORT, the highest performance was 
achieved when Tlost was set to 1, since the design 
only considers frame-to-frame, and the prediction 
error is bound to be larger in the presence of camera 
movement.

Table 2 shows the experimental results using 
test data collected from a mobile robot, which shows 
a MOTA of 50.77 when Tlost is set to 1, followed by 
49.63, 49.63, and 49.83 when Tlost is set to 2, 3, and 4, 
respectively.

In contrast, when the survival period of the object 
tracker was dynamically set through camera motion 
correction to increase prediction reliability, the tracking 
accuracy improved. Experiment results using MOT17-

Table 2. Performance evaluation table according to the survival period setting of the object tracker

Method MOTA(↑) FN(↓) IDsw(↓)
SORT 1 (Default) 50.77 4,332 274
SORT 2 49.63 4,449 266
SORT 3 49.63 4,447 265
SORT 4 49.83 4,437 258
SORT Dynamic 51.93 4,226 268

Table 3. Tracking performance test results on MOT17

Method MOTA(↑) MOTP(↑) FN(↓) IDsw(↓)
SORT 1 49.01 85.83 51,343 1,043
SORT Dynamic 49.97 85.65 49,997 1,051
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02, 05, 09, 10, and 11 data collected with the camera 
facing forward [32] in Table 3 demonstrated that a 
simple adjustment of the object tracker’s survival 
period led to a 0.96% increase in tracking accuracy.

4.5. Experimental results
Object tracking performance measurements were 
conducted through sequences that included ground 
truth information for multiple objects and odometry 
information. In Table 4, SORT, SORT+Dynamic 
(applying dynamic survival period setting only), 
SORT+Odom (applying motion correction only), 
and Proposed (applying both motion correction and 
dynamic survival period setting) were evaluated using 
collected test data.

In the case of SORT+Odom, the performance 
exceeded SORT’s all metrics, with a significant 
improvement in the IDsw metric, decreasing from 
277 to 180. This signifies enhanced tracking stability 
in dynamic situations due to the proposed correction 
technique.

S O RT + D y n a m i c  s h o w e d  o n l y  a  s l i g h t 
improvement of 2.49 in terms of MOTA compared to 
SORT. However, when applied together with camera 
motion correction, Proposed exhibited a significant 
4.16 improvement in performance compared to 
SORT+Odom. This indicates that the performance 
improvement is higher when the survival period is 
dynamically set, reflecting the increased prediction 
performance of the tracker.

Most metrics, apart from MOTA, which represents 
overall tracking accuracy, showed the highest 
performance when both techniques were used together, 

demonstrating a meaningful improvement in both 
accuracy and stability. Moreover, the processing speed 
was only slightly reduced, from SORT’s 2.24 ms to 
2.38 ms, showing that the tested multi-object tracking 
techniques ran on a system consisting of a 1.5 GHz 
Cortex-A72 single-core processor and 4 GB memory.

5. Conclusion
In this paper, we have proposed a multi-object tracking 
method that enhances the tracking performance of 
small mobile robots in human tracking scenarios 
by real-time correction of tracking errors caused 
by the robot’s  motion using wheeler  encoder 
odometry information and dynamically managing the 
survival period of the object tracker. To evaluate the 
performance of the methodology, we collected six 
sequences of data, including odometry information, 
from the mobile robot. When using the YOLOv4-tiny 
object detector, the proposed method maintained real-
time processing at a speed of 2.38 ms, demonstrating 
a 16.46% improvement in MOTA compared to SORT 
experimentally. In addition, by dynamically managing 
the survival period based on the confidence of the 
prediction model for the tracked objects, we confirmed 
that object identities are maintained without switching, 
leading to enhanced tracking stability over extended 
periods. At a time when interactions between mobile 
robots and humans are becoming increasingly active, 
we anticipate that the technique proposed in this paper 
will enable more precise and stable tracking of humans. 
This, in turn, will facilitate high-confidence interactions 
between robots and humans through human tracking.

Table 4. Tracking performance test results on PxRx sequence

Method MOTA(↑) MOTP(↑) FP(↓) FN(↓) Hz(↑) IDF1(↑) IDP(↑) IDR(↑) IDsw(↓)
SORT 49.44 81.50 13 4,453 466.3 29.86 43.27 22.79 277

SORT + Dynamic 51.93 81.34 15 4,226 429.6 37.62 52.94 29.18 268
SORT + Odom 53.42 82.23 11 4,179 440.6 39.19 54.86 30.49 180

Proposed 57.58 81.90 14 3,813 420.7 46.02 61.68 36.70 152
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