Space-based Earth remote sensing: Part 1. Satellite orbit theory
DOI:
https://doi.org/10.18063/som.v3i1.646Keywords:
satellite orbit, Sun-synchronous orbit, repeat ground track, quasi-synchronization, tideAbstract
The development of oceanography and meteorology has greatly benefited from remotely sensed satellite data of the atmosphere and ocean. For oceanographers, meteorologists, hydrologists and climatologists to obtain high-quality satellite data, orbits along which the satellites move must be designed carefully. For this reason, Sun-synchronous, repeat ground track orbits have traditionally been used for visible-wavelength and infrared Earth observations. As the needs for varied datasets are growing, however, new classes of Earth-observing missions are emerging such as interferometry and radiometry to name a few. On the other side, satellite platforms and onboard sensors are getting more compact and less expensive, allowing developing nations to launch their own satellites and under-researched parts of the Earth be studied. In light of these changes, this paper introduces new types of satellite orbits from celestial mechanics perspectives, whose applications will be detailed further in the follow-up work.